362 research outputs found

    The psychology of AMBER Alert: Unresolved issues and implications

    Get PDF
    The AMBER alert system is likely affected by a number of psychological processes, yet remains understudied. The system assumes people will remember Alert information accurately and notify police, but psychological research on related phenomena (e.g., memory, willingness to help) indicates that people may not be able or willing to act in ways the promote the success of the system. In addition, the system is intended to deter child abductions, however, the system could prompt copycat crimes from perpetrators seeking publicity. The system could also cause a precipitation effect in which a perpetrator who sees the Alert could decide to murder the child immediately to avoid capture. Policy recommendations are made based on psychological research and theory, although more research is needed to develop the most effective system possible

    Nebraska’s Natural Resource District System: Collaborative Approaches to Adaptive Groundwater Quality Governance

    Get PDF
    Nonpoint source pollution of groundwater by nitrates from agricultural activity is a persistent problem for which developing effective policy approaches has proven difficult. There is little empirical information on forms of governance or regime attributes that effectively and sustainably address agricultural nonpoint source pollution of groundwater. Nebraska’s Natural Resource District (NRD) system is a rare example of a groundwater governance regime that is putting programmes in place that are likely to generate sustainable groundwater quality outcomes. We focus on three groundwater nitrate management programmes in the state that collectively represent the broader NRD system. The research shows that four elements of Nebraska’s groundwater governance regime are fundamental to its success in addressing groundwater nitrates: 1) the local nature of governance, which builds trust among stakeholders; 2) the significant authority granted to the local districts by the state, allowing for the development of locally tailored solutions; 3) the collaborative governance approach, which allows potential scale imbalances to be overcome; and 4) the taxing authority granted to NRDs, which enables them to fund locally tailored management solutions. We find that these aspects of the NRD system have created conditions that enable adaptive, collaborative governance that positions the state well to address emerging groundwater quality challenges. We present aspects of the governance regime that are generalisable to other American states as efforts to address nitrate pollution in groundwater increase

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis

    Get PDF
    Tissue transglutaminase is a calcium-dependent enzyme that catalyzes the cross-linking of polypeptide chains, including those of extracellular matrix (ECM) proteins, through the formation of epsilon-(gamma-glutamyl) lysine bonds. This crosslinking leads to the formation of protein polymers that are highly resistant to degradation. As a consequence, the enzyme has been implicated in the deposition of ECM protein in fibrotic diseases such as pulmonary fibrosis and atherosclerosis. In this study, we have investigated the involvement of tissue transglutaminase in the development of kidney fibrosis in adult male Wistar rats submitted to subtotal nephrectomy (SNx). Groups of six rats were killed on days 7, 30, 90, and 120 after SNx. As previously described, these rats developed progressive glomerulosclerosis and tubulo-interstitial fibrosis. The tissue level of epsilon-(gamma-glutamyl) lysine cross-link (as determined by exhaustive proteolytic digestion followed by cation exchange chromatography) increased from 3.47+/- 0.94 (mean+/-SEM) in controls to 13.24+/-1.43 nmol/g protein 90 d after SNx, P </= 0.01. Levels of epsilon-(gamma-glutamyl) lysine cross-link correlated well with the renal fibrosis score throughout the 120 observation days (r = 0.78, P </= 0.01). Tissue homogenates showed no significant change in overall transglutaminase activity (14C putrescine incorporation assay) unless adjusted for the loss of viable tubule cells, when an increase from 5.77+/-0.35 to 13.93+/-4.21 U/mg DNA in cytosolic tissue transglutaminase activity was seen. This increase was supported by Western blot analysis, showing a parallel increase in renal tissue transglutaminase content. Immunohistochemistry demonstrated that this large increase in epsilon-(gamma-glutamyl) lysine cross-link and tissue transglutaminase took place predominantly in the cytoplasm of tubular cells, while immunofluorescence also showed low levels of the epsilon-(gamma-glutamyl) lysine cross-link in the extracellular renal interstitial space. The number of cells showing increases in tissue transglutaminase and its cross-link product, epsilon-(gamma-glutamyl) lysine appeared greater than those showing signs of typical apoptosis as determined by in situ end-labeling. This observed association between tissue transglutaminase, epsilon-(gamma-glutamyl) lysine cross-link, and renal tubulointerstitial scarring in rats submitted to SNx suggests that tissue transglutaminase may play an important role in the development of experimental renal fibrosis and the associated loss of tubule integrity

    The Most Metal-Poor Stars. II. Chemical Abundances of 190 Metal-Poor Stars Including 10 New Stars With [Fe/H] < -3.5

    Get PDF
    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] < -2.5, of which 86 are extremely metal poor, [Fe/H] < -3.0. Our program stars include ten new objects with [Fe/H] < -3.5. We identify a sample of "normal" metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to "normal" stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus Teff which likely reflects non-LTE and/or 3D effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.Comment: Accepted for publication in Ap

    An Integrated Approach to Testing Dynamic, Multilevel Theory: Using Computational Models to Connect Theory, Model, and Data

    Get PDF
    Some of the most influential theories in organizational sciences explicitly describe a dynamic, multilevel process. Yet the inherent complexity of such theories makes them difficult to test. These theories often describe multiple subprocesses that interact reciprocally over time at different levels of analysis and over different time scales. Computational (i.e., mathematical) modeling is increasingly advocated as a method for developing and testing theories of this type. In organizational sciences, however, efforts that have been made to test models empirically are often indirect. We argue that the full potential of computational modeling as a tool for testing dynamic, multilevel theory is yet to be realized. In this article, we demonstrate an approach to testing dynamic, multilevel theory using computational modeling. The approach uses simulations to generate model predictions and Bayesian parameter estimation to fit models to empirical data and facilitate model comparisons. This approach enables a direct integration between theory, model, and data that we believe enables a more rigorous test of theory

    Differences in BVOC oxidation and SOA formation above and below the forest canopy

    Get PDF
    Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00–20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (∌ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 ”g m−3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2
    • 

    corecore