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Abstract

Some of the most influential theories in organizational sciences explicitly describe
a dynamic, multilevel process. Yet the inherent complexity of such theories makes
them difficult to test. These theories often describe multiple sub-processes that
interact reciprocally over time, at different levels of analysis, and over different time
scales. Computational (i.e., mathematical) modeling is increasingly advocated as a
method for developing and testing theories of this type. In organizational sciences
however, efforts that have been made to test models empirically are often indirect.
We argue that the full potential of computational modeling as a tool for testing
dynamic, multilevel theory is yet to be realized. In this paper, we demonstrate an
approach to testing dynamic, multilevel theory using computational modeling. The
approach uses simulations to generate model predictions, and Bayesian parameter
estimation to fit models to empirical data and to facilitate model comparisons. This
approach enables a direct integration between theory, model, and data, that we
believe enables a more rigorous test of theory.
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An integrated approach to testing dynamic, multilevel theory: Using computational models
to connect theory, model, and data

Many organizational phenomena are dynamic in nature, meaning that they evolve over time
(Lord, Diefendorff, Schmidt, & Hall, 2010; Neal, Ballard, & Vancouver, 2017; M. Wang, Zhou, &
Zhang, 2016). Examples include individual motivation, performance and well-being; team cohesion
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and effectiveness; and organizational capability and culture. There are many theories that seek to
describe how these phenomena emerge and change from one time point to the next. Examples
include theories of self regulation (Kanfer & Ackerman, 1989; Neal et al., 2017), the reoccurring
phase model of team processes (Marks & Mathieu, 2001), the cultural dynamics model (Hatch,
1993), and McKinley, Latham, and Braun’s (2014) model of organizational decline and innovation.
Although dynamic theories such as these have been influential, they are difficult to test. These
theories propose a set of component processes that interact reciprocally over time and that may not
be directly observable. The challenges of testing dynamic theory are magnified when the theorized
processes operate at multiple levels of analysis. The behavior of the system as a whole is often
an emergent property of the interactions amongst the lower-level processes. Such phenomena are
difficult to assess using traditional multilevel methods (Kozlowski, Chao, Grand, Braun, & Kuljanin,
2013).

Computational modeling has been increasingly advocated as a method for developing and
testing complex theories of this type (e.g., Ballard, Yeo, Loft, Vancouver, & Neal, 2016; Harrison,
Lin, Carroll, & Carley, 2007; Rudolph, Morrison, & Carroll, 2009; Salas, Kozlowski, & Chen, 2017;
Tarakci, Greer, & Groenen, 2016; Vancouver, Wang, & Li, 2018; M. Wang et al., 2016). Computa-
tional modeling is the practice of articulating theory in the form of mathematical equations and/or
computer code and evaluating the dynamic behavior of the theory by simulating the model. This
approach offers unique advantages to researchers attempting to understand multilevel phenomena.
Simulation of the theory enables the researcher to examine the dynamic behavior that emerges at
different levels of analysis as the system is played out over time. For example, Grand (2017) used
a computational model to demonstrate that stereotype threat, which has a relatively small effect on
performance at the individual level (in statistical terms), has a substantial negative effect on perfor-
mance at the organizational level. This practice can be used to assess both top-down and bottom-up
effects, as well as processes that unfold over different time scales.

In this paper, we present an integrated approach to testing dynamic theories of multilevel
organizational phenomena using computational modeling. Figure 1 shows the three key elements
required for testing dynamic theories. The first element is a theory of the change process. Such
a theory describes how the system evolves from one time point to the next. The theory identifies
the dynamic variables in the system and describes the underlying mechanisms that explain how
these variables change over time. The second element is a mathematical or statistical model that
operationalizes the key components of the dynamic theory. The third element is empirical data
that is collected by observing the system over time. Rigorous theory testing requires the seamless
integration of all three components (Collins, 2006).

The upper half of Figure 1 depicts the most common way of linking theory, model, and data.
Under the conventional approach, a conceptual model (A) translates the theory into a set of verbal
hypotheses that summarizes the relationships between variables that are theorized to be involved
in the change process. The conceptual model is tested against empirical data using a statistical
model (B) that maps as closely as possible to the conceptual model. For example, Li, Fay, Frese,
Harms, and Gao (2014) used a conceptual model to generate a series of hypotheses regarding the
reciprocal effects between personality and work characteristics and tested these hypotheses using a
latent change statistical model. The challenge with this approach, however, is that it often difficult to
directly represent the complex processes described by dynamic theories in a conventional statistical
model. One reason for this is that statistical models require at least one observed variable to map
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Figure 1. Integration of theory, model, and data under conventional and computational modeling
approaches to dynamic theory testing.

to each latent construct. However, the change process often involves constructs that may be hard
to measure (e.g., skill acquisition; Kanfer & Ackerman, 1989). This can make it hard to achieve
a close mapping between theory and model, which ultimately makes the theory hard to test using
standard methods.

We propose that an approach based on computational modeling, depicted in the lower half of
Figure 1, integrates theory, model, and data more directly. The value of this approach comes from
the fact that computational modeling allows for direct mapping between theory and model (C), be-
cause the model is custom built to represent the process described by the theory. At the same time,
computational models produce quantitative predictions that can be directly compared to empirical
data (D). However, the efforts that have been made to test computational models in organizational
sciences are often relatively indirect. One common approach is to examine whether the model can
reproduce key results from previous empirical research (e.g., Kennedy & McComb, 2014; Vancou-
ver & Purl, 2017). For example, Vancouver et al. (2018) found that their integrated computational
model of work motivation reproduced Latham and Baldes’s (1975) finding that employees respond
to increases in goal difficulty by applying more effort. Another common approach is to simulate
data from a computational model, and then compare differences in the results of statistical tests
run on the simulated data with the results of tests run on data collected from actual participants
(e.g., Grand, Braun, Kuljanin, Kozlowski, & Chao, 2016). For example, Lin, Yang, and Demirkan
(2007) implemented a computational model to explore whether firm ambidexterity was related to
firm performance. They compared regression analyses of the simulated data with regression analy-
ses of eight years of empirical data to compare the effects of contingency factors such as firm size.
The challenge with these approaches is that they can only be used to determine whether the model
produces the same qualitative effects that are present in the empirical data. They cannot be used
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to assess how precisely the predictions of the model correspond to the data, which is important for
comparing alternative models. The latter approach also limits the set of possible predictions that
can be tested to those which can be assessed using standard statistical tests (e.g., linear relationships
between variables).

Although there is much to be gained from the approaches described above, a more compre-
hensive test of the theory can be achieved by going a step further and fitting the computational model
directly to the data (Farrell & Lewandowsky, 2018). Fitting the model to the data enables the model
parameters to be informed by the empirical observations, just as would be the case with coefficients
in a regression model. An advantage of this approach is that it enables the correspondence between
the data and the model predictions to be quantified, making it easier to conduct model comparisons
that rule out alternative explanations. In this paper, we propose and demonstrate a four-step ap-
proach to testing a computational model that involves: 1) simulation, 2) model fitting, 3) model
comparison, and 4) interpretation of the parameter estimates.

In the next section, we elaborate on the challenges associated with testing dynamic theories
of multilevel phenomena and the associated advantages of computational modeling. Following that,
we introduce an example research question that we use to demonstrate our approach. The research
question is derived from the resource allocation theory of self-regulation (Kanfer & Ackerman,
1989), and concerns the way that people adjust goals and effort over time. This phenomenon in-
volves a set of interacting processes that unfold at different levels of analyses, a mix of top-down
and bottom-up multilevel effects, and at least one internal process that is not directly observable. We
begin by describing the theory, and translating it into a computational model. We then demonstrate
how to test this model using the four-step approach described above.

A four-step approach to testing dynamic theory

A dynamic system is one that changes over time (Galor, 2007; Luenberger, 1979). Testing
dynamic theories in the organizational sciences poses some specific challenges that can be addressed
by computational modeling. One challenge is the existence of feedback loops in which the outputs
of the system influence the inputs to the system at some future point in time. Theories involving
dynamic systems seek to understand the how the processes that form the feedback loop unfold over
time. For example, McKinley et al. (2014) proposed a theory of organizational decline in which
a spiral of declining performance could be counterbalanced by innovation activities. This theory
describes a feedback loop in which a decline in performance leads to innovations that in turn either
accelerate or counteract the downward performance trajectory.

Dynamic theories are also often multilevel in nature. They often incorporate loops that op-
erate at multiple levels of analysis. For example, the self-regulatory system is often conceptualized
as a set of nested loops operating at different levels (Carver & Scheier, 1998; Powers, 1973). The
lower-level loop governs the allocation of effort as the person pursues the goal. During the goal
striving episode, effort is applied in response to a discrepancy between the goal and one’s current
level of performance, which enables the person to make progress towards their goal. This process
operates within goal striving episodes. The higher-level loop adjusts the difficulty of the goal that
the person pursues across successive goal striving episodes. This process operates between goal
striving episodes. The behavior of the system as a whole reflects a mix of processes that cut across
these different levels of analysis. Effort exerts an effect on performance, which in turn exerts an
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effect on goals (a bottom-up process), while goals exert an effect on effort and performance (a top-
down process). These processes may, in turn, shape and be shaped by processes at higher levels
(e.g., the individual, team or organizational level).

As a more macro level example, the literature on organizational routines attempts to under-
stand the dynamic, multilevel process by which patterns of action and interaction between indi-
viduals within the organization influences the practices that form at the firm level (Abell, Felin, &
Foss, 2008; Pentland, Feldman, Becker, & Liu, 2012). In this context, the lower level of analysis
represents the actions taken by individual actors and the higher level represents the outcomes for the
organization as a whole. The emergence of organizational routines at the higher level of analysis is
thought to be largely influenced by processes of learning and selective retention that operate at the
lower level.

Within the organizational sciences, dynamic theories also incorporate internal mechanisms
that cannot be observed or measured directly, but which are used to explain observed phenomena.
For example, the resource allocation theory of self-regulation uses the skill acquisition process to
explain why the relationship between effort and performance changes over time (Kanfer & Acker-
man, 1989). Specifically, it is assumed that the reason why less effort is required to achieve the same
level of performance after practicing a task is because the person has become more skilled. Skill
acquisition is an internal mechanism that cannot be directly observed independently of performance
and effort. Similarly, in the organizational routines literature, the process of action retention is an
internal mechanism that must be inferred based on the patterns of actions observed (Feldman &
Pentland, 2003).

It is because of the complexities described above that many researchers have advocated the
use of computational modeling for developing and testing dynamic, multilevel theory (Kozlowski et
al., 2013; Weinhardt & Vancouver, 2012). Computational modeling allows researchers to formally
(i.e., mathematically or via propositional logic) represent the rules that govern how the system
changes, and examine the dynamic behavior of the system at each level of analysis as it is played
out over time. As such, this approach is well-suited to theories that contain the dynamics described
above. In the sections below, we demonstrate a four-step approach to testing theory using com-
putational models. The first is to conduct a simulation study (sometimes referred to as a virtual
experiment) in order to demonstrate the model’s sufficiency. Sufficiency refers to the ability of the
assumptions that form that model to reproduce the pattern of behavior that that theory purports to
explain (Epstein, 1999; Farrell & Lewandowsky, 2018; Fum, Del Missier, & Stocco, 2007).

The second step is to conduct a quantitative test of the model by fitting the model to the em-
pirical data. Fitting a model involves using the empirical data to estimate the values of the model’s
parameters and generating predictions from the model based on the estimated parameter values.
This gives the model the best possible chance of accounting for the data. We use Bayesian param-
eter estimation for model fitting, because it provides a robust method for estimating the parameters
of complex models. It also provides information about the uncertainty inherent in the parameter es-
timates, making it easy to compare parameter values across experimental conditions or participant
groups and to examine the range of observations that are most probable according to the model. The
Bayesian approach also offers useful ways of quantifying model-data correspondence that facilitate
model comparison.

The third step is to compare the model to alternatives in order to rule out competing expla-
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nations. This step allows the researcher to establish the necessity of the model’s assumptions, for
example, by demonstrating that the model can no longer account for the empirical trends when these
assumptions are changed or removed (Farrell & Lewandowsky, 2018). The fourth step is to interpret
the estimated values of the model parameters. This allows the researcher to quantify latent compo-
nents of the dynamic process based on the empirical data. These quantities can then be compared
across experimental conditions or participant groups.

In the next section, we begin our demonstration by describing a theory of dynamic self-
regulation and representing it as a computational model. We then describe the longitudinal data
that we use to test the model. In the following sections, we evaluate our theory using the approach
described above. It is important to note that the approach we demonstrate below is a general one. It
is not limited to the theory or model we consider in this paper, or the levels of analysis at which the
processes described by the theory operate. We return to the issue of generality in the discussion.

A theory and model of dynamic self-regulation

To illustrate the approach, we show how it can be used to model a set of reciprocal processes
involving both top-down and bottom-up multilevel effects unfolding over different time scales. The
problem that we focus on is dynamic self-regulation. We start with a brief description of the theory
that we are drawing on. We then translate the theory into a computational model and evaluate the
extent to which that model can account for data collected in an experiment. Note that the primary
aim of the analysis presented is to demonstrate the approach to testing computational models. We
acknowledge that there are likely many plausible ways in which the processes described below can
be represented, and that more work will be needed to refine the more nuanced assumptions of the
model. The goal here is not to propose a definitive model of self-regulation, it is to demonstrate
how this approach can be applied to test theories of complex, multilevel phenomena.

Theory

Self-regulation theories describe the process by which people interact with their environment
to achieve their goals (Neal et al., 2017). In this analysis, we focus on two interrelated processes:
a) the process by which people adjust the level of effort that they apply whilst striving for a goal;
and b) the process by which they adjust the difficulty level of the goals that they pursue. The type
of effort that we focus on is perceived mental effort, which is the subjective feeling of trying hard
(Humphreys & Revelle, 1984). Theories of self-regulation typically assume that effort is a limited
capacity resource (Kanfer & Ackerman, 1989), and that it is regulated by a negative feedback loop
(Vancouver, 2005). Specifically, it is assumed that the person has a goal that represents the level of
performance that they want to achieve, and they monitor the discrepancy between the desired level
of performance and the current level of performance, and adjust their effort accordingly. This dis-
crepancy is commonly referred to as the goal-performance discrepancy. Larger goal-performance
discrepancies indicate that more effort is needed to reach the goal, and therefore result in more effort
being applied (Brehm & Self, 1989; Kruglanski et al., 2012; Wright, 2008). As a result, people are
expected to reduce their effort when the goal-performance discrepancy decreases 1.

1An anonymous reviewer commented that the subjective experience of effort may not always correspond to objective
indicators of effort, such as the allocation of attentional resources. This issue relates to a long-standing debate over the
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Figure 2. Effects of effort and on task performance throughout skill acquisition. From “Motivation
and Cognitive Abilities: An Integrative/Aptitude-Treatment Interaction Approach to Skill Acquisi-
tion,” by R. Kanfer and P. L. Ackerman, 1989, Journal of Applied Psychology, 74, p. 660. Copyright
1989 by the American Psychological Association.

Theories of skill acquisition assume that the amount of effort required to achieve a given level
of performance changes as the person becomes more skilled at the task (Kanfer & Ackerman, 1989).
During the early phases of skill acquisition, most people will require a relatively high level of effort
to achieve a modest level of performance (see Figure 2). For this reason, performance during the
early phases of skill acquisition is said to be “resource limited”, because it is sensitive to the amount
of resources that are applied (i.e., effort; Norman & Bobrow, 1975). As the person becomes more
skilled at the task, they require less effort to achieve the same level of performance. Performance
during the later phases of skill acquisition is said to be “data-limited”, because it is constrained by
the nature of the task (Norman & Bobrow, 1975).

Theories of self-regulation also assume that people adjust their goals based on past perfor-
mance. If a person fails to achieve their goal, they may lower their goal for the next attempt, whereas
if they achieve their goal, they may raise it (Donovan & Williams, 2003). Adjustments to the goal
level have an impact on subsequent effort, because they affect the goal-performance discrepancy.
So, whilst the amount of effort that the person applies may decrease over time as the person becomes
more skilled at the task, this may be counteracted by an increase in effort caused by the individual
setting more difficult goals. The amount of effort that the person applies at any point in time reflects
a mix of these processes, which unfold over different time scales.

measurement of effort and the relative merits of subjective measures (of the type used here) by comparison with objective
measures (either behavioral or physiological; Humphreys & Revelle, 1984; Tsang & Wilson, 1997). Although these
issues are important to consider, they are beyond the scope of the current paper.
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Model

In this section, we translate the theory presented above into a dynamic, computational model.
In developing the model, we assume that the person performs a task that is broken into a series
of discrete goal striving episodes, and that prior to each episode, the person sets a goal for their
output in the next goal striving episode. This goal is then revised prior to the next episode. A
summary of the model is presented in Figure 3. In this diagram, observed variables are represented
as shaded squares, unobserved variables are represented as white squares, and estimated parameters
are represented as white circles. The figure uses plates to differentiate levels of analysis. The
observation plate represents the lowest level of analysis. Variables positioned within this plate (i.e.,
practice, skill, effort, and performance) vary across observations within each goal striving episode.
The episode plate represents a higher level of analysis. Variables positioned within this plate (but
not within the observation plate; i.e., goal) vary across goal striving episodes but do not vary within
each episode.

As can be seen, the model assumes that effort is determined by the goal level and the perfor-
mance variable. Effort in turn combines with skill, which is an unobserved variable that increases
with practice, to influence performance. The dynamics of effort and performance over time within
each goal striving episode feed through to influence the higher-level goal revision process that op-
erates across goal striving episodes. The model therefore captures the top-down effects of goal on
effort and performance as well as the bottom-up effects of these variables on goal level. The model
also assumes that there are several free parameters that affect these processes, which are explained
in more detail below. As can be seen, the effort, performance, and goal level nodes all include ar-
rows that emerge from and return to that same variable. These self-feedback loops indicate that the
levels of these variables depend in part on their previous values. In the sections below, we elaborate
on the details of the model. We begin by describing the model of the effort regulation process. We
then describe how the model accounts for skill acquisition. We then describe how effort and skill
determine the level of performance that is achieved. Finally, we describe how the goal revision
process is modeled.

Effort Regulation. The theory presented above suggests that during each goal striving
episode the person regulates the amount of effort that they apply to the task. Effort is a dynamic
variable, because it is adjusted from one time point to the next, with its value at a given time point
being in part determined by its previous value. Formally, the level of effort that the person applies
at point i within episode j, denoted Efforti,j , is represented as follows:

Efforti,j = Efforti−1,j + ∆Efforti,j , (1)

whereEfforti−1,j is the level of effort at the previous point in time, and ∆Efforti,j is the change
in the level of effort. The process that produces changes in effort is represented as follows:

∆Efforti,j = α× (Effortbl − Efforti−1,j) + β × (GPDi−1,j −GPDi−2,j). (2)

Our model assumes that changes in effort are governed by two factors. The first is a return
to baseline process whereby effort, in the absence of any changes in goal-performance discrepancy,
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Figure 3. Summary of the computational model of dynamic self-regulation. Observed variables are
represented as shaded squares, unobserved variables are represented as white squares, and estimated
parameters are represented as white circles. The observed goal variable within the observation plate
varies within and between goal striving episodes. Variables within the episode plate (but not the
observation plate) vary only between goal striving episodes. Variables outside the episode plate do
not vary over time. Variables with self-feedback loops are dynamic variables, which have levels that
are in part determined by their previous values.
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returns to a neutral point over time. This return to baseline process is represented in the first term of
Equation 2, where Effortbl is the baseline level to which effort returns, and α is the rate at which
effort returns to baseline. α can take on any value between 0 and 1, where higher values produce a
more rapid return to baseline.

The second factor that governs changes in effort is the change in goal-performance discrep-
ancy. The process by which effort responds to changes in goal-performance discrepancy is repre-
sented in the second term of Equation 2. GPDi−1,j and GPDi−2,j represent the goal-performance
discrepancy at the previous two time points, which means thatGPDi−1,j−GPDi−2,j is the change
in goal-performance discrepancy at the previous time point. β is a gain parameter that represents
the person’s sensitivity to changes in the goal-performance discrepancy. If β has a value of 0, the
person is insensitive to changes in goal-performance discrepancy. However, based on the theory de-
scribed above, we would expect that decreases in the goal-performance discrepancy should produce
a decrease in effort. We therefore expect β to take on a positive value.2

Skill Acquisition. According to the“law of practice”, skill increases over time as a function
of the time spent practicing a task (Newell & Rosenbloom, 1981). The bulk of current evidence sug-
gests that the relationship between practice and skill is exponential (Heathcote, Brown, & Mewhort,
2000; Leibowitz, Baum, Enden, & Karniel, 2010). This exponential relationship can be represented
as follows:

Skilli,j = Skillmax − (Skillmax − Skill0)× e−δ×Practicei,j , (3)

where Practicei,j represents the total amount of practice that the person has had up to the current
point in time. According to Equation 3, the person begins the task with some initial level of skill,
which is denoted Skill0, and skill increases over time. The relationship between practice and skill
is non-linear, with large gains in the early phases of skill acquisition giving way to progressively
smaller gains as the level of skill approaches the asymptote, which is denoted Skillmax. δ represents
the learning rate, which controls how rapidly skill is acquired. This parameter can take on any
value between 0 and 1, with higher values producing skill acquisition curves that approach the skill
asymptote more rapidly.

Performance. Performance, like effort, is a dynamic variable. The total amount of output
that the person has produced at the current point in time (Perfi,j) is the sum of the total output at
the previous time point (Perfi−1,j) and the new output produced during the current time interval
(∆Perfi,j):

Perfi,j = Perfi−1,j + ∆Perfi,j . (4)

The theory presented above suggests that the amount of output that the person produces dur-
ing the current time interval is influenced by both skill and effort, as illustrated in Figure 2. It would

2An anonymous reviewer pointed out that another way of modeling effort would be to assume that effort remains at the
same level, regardless of the magnitude of the goal-performance discrepancy, so long as the goal has not been achieved.
We agree that this model cannot be ruled out. Distinguishing between the two models would require a more targeted
experiment that is specifically designed to examined the relationship between goal-performance discrepancy and effort.
For example, such an experiment might examine how effort responds to disturbances that change the goal-performance
discrepancy during goal striving. These issues, however, are beyond the scope of the current paper.
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be possible to approximate the family of curves shown in Figure 2 using a linear function relating
effort to performance, with skill controlling the intercept of the function and effort controlling the
slope. However, this would provide an incomplete representation of the underlying theory because
a linear function cannot produce the performance asymptote that is proposed to arise when fur-
ther increases in effort do not produce any increase in performance. For this reason, we model the
effort-performance relationship using a logistic function, which is a non-linear function that allows
for performance to reach an asymptote with increasing effort. The effort-performance relationship
is modeled as follows:

∆Perfi,j = Skilli,j

1 + e−κ×(Efforti,j−γ) . (5)

The numerator in Equation 5 controls the performance asymptote, which determines the max-
imum amount of output that the person can produce at the current time point. In other words, this
is the amount of output that would be produced if the person was to exert the maximum level of ef-
fort. As can be seen in the equation, the performance asymptote is determined by the person’s skill
level. As the person becomes more skilled, the maximum amount of output that they can produce
increases.

The nature of the relationship between effort and output is determined by the κ and γ parame-
ters. κ controls the steepness of the function. Higher values of κmean that smaller changes in effort
are necessary to achieve greater changes in performance. γ controls the location of the function.
This parameter represents the amount of effort required to produce a change in performance that is
equal to half of the maximum performance change. Equation 5 produces effort-performance curves
like those shown in Figure 2, where the height of the asymptote increases as more skill is acquired.

Goal Revision. The final component of the model is the bottom-up process by which goal
level is adjusted over time. The goal level set at the start of the goal striving episode (Goalj) is
determined by the goal level set at the start of the previous goal striving episode (Goalj−1) and the
extent to which they adjust their goal level (∆Goalj):

Goalj = Goalj−1 + ∆Goalj . (6)

Fortunately, there is an existing computational model that describes how people make these
adjustments (Gee, Neal, & Vancouver, 2018). There are two components to the process described
by Gee et al.’s model. First, their model assumes that the person adjusts their goal level by an
amount that is proportional to the discrepancy between the previous goal and the previous level of
performance. This process anchors the goal on the level of performance that the person can expect
to achieve, given their history of performance across previous goal striving episodes. Second, the
model assumes that the adjustment of the goal around this anchor point is biased by the person’s
risk preference. A person with a high risk preference will tend to set a goal higher than what they
can expect to achieve given previous performance, while a person with a low risk preference will
tend to set a goal lower than what they can expect to achieve given previous performance. The goal
adjustment can be represented as follows:

∆Goalj = θ × (Perfj−1 −Goalj−1) + λ. (7)
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In the above equation, Perfj−1 represents the total amount of output produced by the end of
the previous goal striving episode. θ controls the sensitivity of goal level to the goal-performance
discrepancy at the end of the previous goal striving episode. θ is bounded between 0 and 1. When θ
is low, the person is relatively insensitive to the goal-performance discrepancy, and so will be slow
to raise their goal as performance improves over time. If theta is high, then the person will be more
sensitive to the goal-performance discrepancy, and goal level will tend to change more rapidly. If
theta is too high, then the person may be overly sensitive to random variation in performance from
one episode to the next. λ represents risk preference, and controls the extent to which the person
sets a goal above or below their anchor point.

Data

To test the model described above, we use data from the recent study by Gee et al. (2018). In
their study, 60 participants each performed ten, 10-minute trials of an air traffic control simulation
task. Each trial represented an independent goal striving episode. In each trial, participants had to
classify ten aircraft pairs as a conflict or non-conflict based on their minimum distance of separation.
Before each trial, participants set a goal for their classification performance on the upcoming trial.
During the trial, the received live feedback regarding their progress toward the goal.

Each trial was broken down into five, 2-minute time windows. At the end of each window
(after two, four, six, eight minutes and at the end of the trial), perceived effort was measured by
asking participants to rate how hard they were trying during the previous two minutes on a scale
from 0 (Not at all) to 10 (Extremely). At the end of each window, the number of decisions the
participant had gotten correct up to that point in that trial was recorded. Thus, each participant
provided fifty performance and effort observations (five for each of the ten goal striving episodes)
and ten goal level observations (one for each episode).

Step 1: Simulating the Model

The first step in evaluating the model is to conduct a simulation study. A simulation study
involves fixing the model parameters to predefined values and examining the output that emerges
from the model under those conditions (Ballard et al., 2016; Ballard, Yeo, Vancouver, & Neal, 2017;
Grand et al., 2016; Vancouver et al., 2018). Simulation is an important first step in evaluating a com-
putational model for several reasons. First, it allows the researcher to demonstrate the sufficiency of
the assumptions that form the model assumptions to account for the behavioral phenomena. For ex-
ample, Vancouver, Weinhardt, and Schmidt (2010) developed a computational model that explained
an earlier empirical result reported by Schmidt and DeShon (2007). Schmidt and DeShon observed
that people tended to shift over time from prioritizing goals with larger discrepancies to goals with
smaller discrepancies. Vancouver et al. (2010) showed that their model reproduced this effect, and
interpreted this finding as evidence of their model’s sufficiency.

Second, simulation is useful for examining the effects that individual parameters have on
the output generated by the model. To do this, researchers manipulate individual parameter values
whilst holding the other parameters constant and examine the effects that changes in the parameter
being manipulated have on the model output. This exercise is referred to as a sensitivity analysis and
is useful for understanding the process components that are responsible for a generating particular
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phenomena (Davis, Eisenhardt, & Bingham, 2007; Fum et al., 2007; Vancouver & Weinhardt, 2012).
Third, simulation allows the researcher to generate quantitative predictions from the model about
how the process plays out over time that can be subjected to empirical examination.

We present a simulation of the above model that was conducted in R (R Core Team, 2018).
The scenario we simulated mirrored the empirical protocol described above. The simulation was run
over 50 time steps, with each time step representing a 2-minute window in the empirical protocol.
The simulation tracked four variables over time: effort, skill, performance, and goal level. As in
the empirical protocol described above, the simulation was divided up into ten unique goal striving
episodes, that each lasted five time steps. Thus, goal level was updated every five time steps (i.e., at
the start of each new goal striving episode). Effort, skill, and performance were updated every time
step.

We chose parameter values that were reasonable based on the scale of the performance vari-
able and the effort measure (which could each range from 0 to 10), and the predictions we made
above regarding the sign of certain parameter values. These parameter values are shown in Table
1. In addition to specifying the parameter values from Equations 1-5, we also had to select initial
values for the effort and goal variables. These initial values are also shown in Table 1. Note that the
performance variable has an initial value of 0 due to the nature of the experimental protocol (i.e.,
people begin each goal striving episode with 0 correct decisions).

Table 1
Description of Model Parameters and Simulated Values

Relevant
Variable

Parameter Description Allowable Values Simulated Value

Effort Effortbl Effort baseline 0-10 4
α Rate of return to baseline 0-1 0.3
β Sensitivity to change in GPD any value 0.1-2.1

Effort0 Effort at start of episode 0-10 7
Skill Skill0 Skill level at start of first episode any positive value 0.1

Skillmax Maximum achievable skill level any value greater than Skill0 3
δ Learning rate 0-1 0.1

Performance κ Sensitivity of performance to effort any value 1
γ Effort required for half of max performance change any value 5

Goal θ Sensitivity to previous episode GPD 0-1 0.5
λ Risk preference any value 0

Goal0 Goal level for first episode 0-10 4

To demonstrate how sensitivity analysis can be used to examine the influence that certain
model parameters on the dynamic behavior of the model, we manipulated the β parameter across
six different levels (0.1, 0.5, 0.9, 1,3, 1.7, and 2.1). As described above, β is a gain parameter
that controls the sensitivity of the effort adjustment process to changes in goal-performance dis-
crepancy. Higher sensitivity means that effort reduces more rapidly in response to reductions in
goal-performance discrepancy. We focus on β because, as will become apparent, this parameter has
important implications for the bottom-up process by which effort regulation influences the higher-
level goal revision process. In practice, researchers conducting a sensitivity analysis will typically
examine a larger number of parameters. To keep our demonstration simple however, we limit our
sensitivity analysis to a single parameter.

The results of the simulations are shown in Figure 4. The figure shows a 4× 10 grid of panels.
Each row of panels in the grid represents a different variable that is generated by the simulation.
Each column of panels represents a unique goal striving episode. Within each panel, the x-axis
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Figure 4. Results of sensitivity analysis examining the effects of sensitivity to goal-performance
discrepancy on effort adjustment, performance, and goal revision. Each row of panels in the grid
represents a different variable that is generated by the simulation. Each column of panels represents
a unique goal striving episode. Within each panel, the x-axis represents the time point within the
goal striving episode and the y-axis represents the level of the relevant variable at that time. The
line color represent the different levels of the β parameter, with red signifying the lowest value (0.1)
and purple signifying the highest value (2.1).

represents the time point within the goal striving episode and the y-axis represents the level of the
relevant variable at that time. Finally, the line color represents the levels of the β parameter, with
red signifying the lowest value (0.1) and purple signifying the highest value (2.1).

The simulations suggest that effort generally decreases over the course of each goal striv-
ing episode as progress is made toward the goal. The sensitivity of effort to changes in the goal-
performance discrepancy has implications for performance within an episode and for goal revision
across episodes. When sensitivity (β) is lower, performance gains during goal striving lead to only
relatively small decreases in effort. This leads to more effort being applied overall, which results in a
higher level of performance at the end of the episode. When sensitivity is higher, performance gains
lead to more pronounced reductions in effort. This leads to less effort being applied, which results
in poorer performance. At very high levels of sensitivity (e.g., when β > 1.5), performance gains
lead to such pronounced reductions in effort that effort dips below its baseline level and then must



TESTING DYNAMIC, MULTILEVEL THEORY 15

increase in order to return to the baseline. This scenario produces the worst performance outcomes.

The effort adjustment process exerts bottom-up effects on the dynamics of goal revision that
emerge across the series of goal striving episodes. The goal for the first episode is not achieved
under any of the six levels of the sensitivity manipulation. This can be seen by the fact that the
maximum performance for any of the six levels in the first episode (approximately 2; shown in the
first column, third row) is lower than the goal for the first episode (4; shown in the first column,
fourth row). The failure to achieve the goal in the first episode leads to the goal for the second
episode being set at a lower level than the first (see second column, fourth row). However, the
trajectory of the goal variable for the third episode onward depends on effort sensitivity. When
sensitivity is lower, a pattern of upward goal revision emerges. This happens because lower effort
sensitivity leads to better overall performances in each episode, which means that the goal tends to
be exceeded and increased from one trial to the next. On the other hand, when sensitivity is higher,
little or no upward goal revision is observed. This happens because higher effort sensitivity leads to
poorer performances in each episode, which means that goals are typically not exceeded.

To conclude this section, we conducted a preliminary test of the theory by examining simu-
lated data from the model. The plausibility of the assumptions that form the model were evaluated
by assessing the output produced using the parameter values in Table 1. The results presented in
Figure 4 suggests the model produces a plausible pattern of effort adjustment and goal revision.
We can interpret this result as preliminary evidence for sufficiency of our model to account for the
dynamic self-regulatory processes described by the theory. We also carried out a sensitivity anal-
ysis to examine the effects of the effort sensitivity parameter on the model output. This analysis
revealed that the relationship between goal-performance discrepancy and effort within each goal
striving episode has bottom-up effects on goal revision that occurs between episodes. Finally, the
simulation revealed a novel prediction for future empirical research. Specifically, the model predicts
that the sensitivity of effort to changes in goal-performance discrepancy might be negatively related
to the emergence of upward goal revision.

Step 2: Fitting the Model to Empirical Data

The second step in testing the computational model is to fit the model to the empirical data
(i.e., data generated from observation of human participants). The goal of model fitting is to provide
a quantitative test of model. This is done by estimating the values of the model parameters based on
the data and examining the correspondence between the data and the predictions of the model when
simulated using those parameter values. Model fitting allows for a more convincing demonstration
of sufficiency, because it can be used to examine not only whether the model can reproduce the
presence of particular effect (which we refer to as qualitative sufficiency), but also how accurately
the model captures the magnitude of the effect (quantitative sufficiency). Another advantage of
model fitting is that it allows the researcher to quantify the extent to which the predictions of the
model correspond to the empirical data. This is particularly important for model comparison, which
we discuss in the next section.

Similar to most statistical models, estimating the parameters of a computational model usu-
ally requires the help of a computer algorithm. There are several software platforms available that
provide general-purpose optimization algorithms that have been used for estimating model param-
eters. Examples of platforms that have been used in organizational sciences include Vensim (e.g.,
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Vancouver et al., 2010), MATLAB (e.g., Ballard et al., 2016), and R (e.g., Gee et al., 2018). General-
purpose optimization is useful for simpler models with only a few estimated parameters. However,
many will fail to produce reliable parameter estimates when applied to relatively complex, dynamic,
and non-linear models like the model described above (for example, they may arrive at different pa-
rameter estimates depending on their starting values).

Fitting our model to the data therefore requires a more robust method of parameter estimation.
For this reason, we use a Bayesian parameter estimation approach. Bayesian parameter estimation
involves combining information about the researcher’s a priori beliefs regarding each parameter,
referred to as its prior distribution (henceforth, prior), with information about the likelihood of the
model given the data. This analysis results in a posterior distribution (henceforth, posterior) on each
parameter, which represents the range of parameter values that are credible given the researcher’s
prior and the empirical data. A highly dispersed posterior, which covers a broad range of possible
values, suggests a high degree of uncertainty regarding the true parameter value. A narrow pos-
terior, which covers only a small range of values, suggests more certainty. Details regarding the
model likelihood function can be found in Appendix A. Details regarding the priors on the model
parameters can be found in Appendix B.

Implementation

Although Bayesian parameter estimation is conceptually straightforward, the implementation
of this method is often complex. For most models, including the types of models likely to be
of interest in organizational sciences, there is no closed-form analytic solution for calculating the
posterior. The posterior must therefore be approximated using Markov chain Monte Carlo (MCMC)
methods. These methods “learn” the posterior distribution over time by producing sequences, or
chains, of sample parameter values that are generated by an algorithm that is known to approximate
the posterior given a sufficient number of samples (see Kruschke, 2015; Van Ravenzwaaij, Cassey,
& Brown, 2018).

There are several open-source platforms for implementing Bayesian models using MCMC
methods. These platforms include WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS
(Plummer, 2003), OpenBUGS (Thomas, O’Hara, Ligges, & Sturtz, 2006), and Stan (Carpenter et
al., 2017). The advantage of programs such as these is that they are sufficiently flexible to enable
the implementation of most computational models, with MCMC algorithm being implemented au-
tomatically by the program. This allows the user to focus on the development of the model itself.
This is similar to programs such as MPlus (Muthen, 1997), where the user writes the model code,
and from that code the program automatically implements the algorithm necessary to estimate the
parameters. In this paper, we use the Stan platform. We use Stan because its MCMC algorithm,
the No-U-Turn Sampler (Hoffman & Gelman, 2014), is particularly well suited for implementing
more complex models like the ones required to represent dynamic, multilevel phenomena (Stan
Development Team, 2017).

To run the model fitting routine, the user includes a call to the Stan model within their code.
At the time of writing, Stan can be run from R, Stata, MATLAB, Python, Julia, or the command
line. For these analyses, we ran Stan via the RStan package (Stan Development Team, 2016), which
provides an R interface to Stan. The R and Stan code required for implementing the model can be
downloaded from https://osf.io/4euhr/. Information regarding how to interpret the RStan output can
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be found in Appendix C.

Evaluating the model fit

Once the model has been fit, the researcher can evaluate whether the model provides a sat-
isfactory account of the data. One simple way to examine the correspondence between the model
and the data is to plot the predictions of the fitted model against the data (Heathcote, Brown, &
Wagenmakers, 2015). This approach is particularly useful for ruling out poorly performing models,
because misalignment between the model and the data are often very obvious.

Because the Bayesian approach assumes the existence of uncertainty in the model parameters,
there must also be uncertainty associated with the predictions of the fitted model. Thus, the pre-
dictions of the fitted model are delivered in the form of a distribution, which is commonly referred
to as the posterior predictive distribution. This distribution represents the values of each model
output that are credible given that uncertainty in the model parameters. Figure 5 shows the results
from the experiment described above superimposed over the posterior predictive distributions from
the computational model. The red line represent the observed means. The blue line represents the
means of the posterior predictive distributions and the light blue ribbon represents the 95% credible
interval (CI) of the posterior predictive distribution. The CI spans the 2.5% and 97.5% quantiles of
the distribution, and provides an indication of the uncertainty around the model predictions.

As can be seen, there is a modest decrease in effort over the course of each goal striving
episode. The observed effort trajectories are mostly within the CI of the model predictions. How-
ever, the posterior predictives appear to underestimate the reduction in perceived effort that occurs
within some goal striving episodes. Consistent with the notion that skill increases as a function
of practice, the rate at which the performance variable increased during each goal striving episode
improved over the ten episodes. Goal level also increased steadily across episodes. The observed
performance and goal level trajectories were generally within the CI of the model predictions.

The above analysis suggests there is general correspondence between the fitted model pre-
dictions and the empirical observations. This finding suggests that the assumptions contained in the
model, when simulated using the parameters estimated by the algorithm, are sufficient to account
for the magnitude of the changes in the observed self-regulatory variables. In the next section, we
continue to evaluate the computational model by directly comparing this model to an alternative.

Step 3: Model Comparisons

Although the evaluations conducted in Steps 1 and 2 demonstrate that the model indeed
accounts for the phenomena it was developed to explain, demonstrations of sufficiency provide only
weak evidence for a model (Farrell & Lewandowsky, 2018). This is because they do not provide
any information regarding the necessity of the assumptions that form the model. Based on the
approaches used in Steps 1 and 2, it is impossible to rule out whether the empirical phenomena
could be accounted for by a simpler alternative model. As such, it is important that any empirical
test of a computational model involve comparing the model to alternatives (e.g., see Ballard et al.,
2016). By demonstrating that the hypothesized model not only accounts for the empirical effects
but also provides a better description of the data than the alternative model(s), the researcher can
provide more compelling evidence in favor of their model.
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Figure 5. Observed empirical trends and posterior predictive distributions from the computational
model. The lines represent the observed means. The dark blue line and light blue ribbon indicate
the mean and 95% credible interval of the posterior predictive distribution.

We compare the model described above, which we now refer to as the hypothesized model, to
an alternative model in which each the four sub-processes represented in the hypothesized model–
effort regulation, skill acquisition, performance accrual, and goal revision–are described using linear
functions. Table 2 summarizes the changes that were made to the hypothesized model to create the
alternative model. Support for the alternative model would suggest that the non-linear dynamics
included in the hypothesized model (e.g., the exponential model of learning and the logistic model
of performance) may not be necessary to account for the self-regulatory processes that were at play
in the experiment described above. Support for the hypothesized model would suggest that these
processes are likely more complex than what can be represented using a linear systems model, and
that the non-linear dynamics might be necessary to account for these processes.

When conducting model comparisons, the researcher will typically repeat Steps 1 and 2 with
each alternative model. The process of simulating and fitting the alternative model(s) can help as-
sess the sufficiency of the alternative explanation(s) for accounting for the phenomenon. However,
these steps are usually not sufficient for discriminating between the alternatives. Differences in
model-data fit may be too subtle to be picked up visually or may be washed out when averaged over
multiple data points. Moreover, evaluation based on visual fit alone ignores other key considera-
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Table 2
Summary of alternative model

Sub-process Equation(s) replaced Equation in alternative model
Effort Regulation Equations 1 & 2 Efforti,j = b0 + b1 ×GPDi−1,j

Skill Acquisition Equation 3 Skilli,j = b0 + b1 × Practicei,j

Performance Accrual Equation 5 ∆Perf = b0 + b1 × Efforti,j + b2 × Skilli,j
Goal Revision Equations 6 & 7 Goalj = b0 + b1 × Perfj−1

tions such as model complexity and generality (Myung & Pitt, 1997; Vandekerckhove, Matzke, &
Wagenmakers, 2015). A more complex model has more flexibility, allowing it account for a wider
range of observations. Generality refers to the extent to which the model applies across different
settings. These two considerations are related. Models that are more complex may end up capturing
sampling error in one dataset that will not generalize to others. This can reduce the ability of the
model to predict new observations (this problem is referred to as overfitting). There is therefore a
need to balance model-data fit with complexity, in order to ensure that the predictions of the model
generalize.

Bayesian approaches to model comparison have some useful features when it comes to quan-
tifying model complexity. Standard approaches to model comparison usually define complexity
based on the number of estimated parameters, with more parameters being taken to mean more
complexity. This is true for commonly used indices such as the AIC (Akaike, 1973), BIC, (Schwarz,
1978), and RMSEA (Steiger, 1990), which all include terms that penalize models with higher num-
bers of parameters. However, the complexity of a model is determined by more than just the number
of parameters. One often unrecognized factor is the functional form of the model (Lee & Wagen-
makers, 2013; Myung & Pitt, 1997). Models with the same number of parameters can still differ in
complexity if the functional form of one model allows it more flexibility than its competitor3. Func-
tional form complexity is important to take into account when assessing our computational model
of self-regulation, because the functional forms of the various sub-processes (e.g., the exponential
model skill acquisition and the logistic model of performance) are theoretically meaningful.

Another often overlooked factor that influences model complexity is the range of possible
values that the model parameters can take on (i.e., the size of the parameter space). For example,
consider two models that share the same functional form and estimated parameters, but one model
requires that a certain parameter only take on positive values, whereas the other model allows that
parameter to take on any value. In this case, the latter model is more flexible and can therefore
account for a broader range of observations (Myung & Pitt, 1997). In our computational model,
the allowable range of parameters is meaningful, because certain parameters theoretically must fall
within certain ranges (e.g., the rate at which effort returns to baseline, α, is theoretically bounded
between 0 and 1; the maximum achievable skill level, Skillmax, must be greater than the initial skill
level, Skill0). As such, it is important that we take into account this form of complexity as well.

Bayesian approaches to model comparison take into account all three of these dimensions
3For example, Steven’s psychophyiscal power law of subjective stimulus intensity (Ψ(x) = k × xa) is more complex

than Fechner’s logorithmic law (Ψ(x) = k × ln(x + a)), even though both laws have two parameters (k and a). The
reason Steven’s law is more complex is that its functional form allows for subjective stimulus intensity (Ψ(x)) to be a
negatively or positively accelerating function of objective intensity (x), whereas under Fechner’s law the function can
only be negatively accelerating (Myung & Pitt, 1997).
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of model complexity. They do so because each parameter in a Bayesian model must have a prior
distribution associated with it. The existence of the prior “levels the playing field” so to speak
because more complex models will have priors that are spread over more possible combinations
of parameter values. This means that, in a more complex model, each possible combination of
parameter values will tend to have lower prior probability. By contrast, simpler models have prior
distributions that are more concentrated, resulting in combinations of possible parameter values
that tend to have higher prior probabilities. This decrease in average prior probability as models
become more complex trades off against any increase in fit that is achieved. As a result, empirical
observations that are highly consistent with the predictions of a simpler model will tend to provide
more evidence for the simpler model, because those observations will correspond to parameter
values that have higher prior probabilities. This is true even if the empirical observations can also be
accounted for by a more complex model. By contrast, empirical observations that are less consistent
with the simpler model will tend to provide evidence in favor of the more complex model.

The standard solution for Bayesian model comparison is the Bayes factor (Jeffreys, 1935;
Kass & Raftery, 1995). The Bayes factor refers to the ratio of the probabilities of the data under each
model, and provides an index of the relative evidence delivered by the data for one model against an
alternative that takes into account both fit and model complexity (Kruschke & Liddell, 2018). There
are some challenges associated with the use of the Bayes factor however (Vandekerckhove et al.,
2015). The Bayes factor can be difficult to obtain when comparing complex models. Calculating the
Bayes factor requires the likelihood of the data under the model to be integrated across the entire
parameter space, which can be computationally cumbersome for models with many parameters.
This is especially true for models that need to be estimated using MCMC methods. In recent years,
methods have been introduced for approximating Bayes factors for models estimated via MCMC
methods (e.g., Evans, Steyvers, & Brown, 2018; Gronau et al., 2017; L. Wang & Meng, 2016).
However, these methods are very computationally demanding.

Another issue associated with use of the Bayes factor is prior sensitivity. The Bayes factor is
strongly influenced by the researcher’s choice of priors (Rouder, Speckman, Sun, Morey, & Iverson,
2009). This means that if the priors are not well-informed (e.g., by previous empirical data), the
resulting Bayes factor will be difficult to interpret. This is less problematic for standard statistical
tests, where considerable thought has gone into the recommended “default” priors (e.g., Wagen-
makers et al., 2018). However, when working with models that are novel and/or more complex, the
researcher may be less confident in their choice of priors because a default specification will likely
not exist. In these cases, Bayes factors are often difficult to interpret.

Because the model we have presented is both novel and relatively complex, we opt for another
commonly-used approach to model comparison: leave one out cross validation (Geisser & Eddy,
1979). Leave one out cross validation is a method for estimating the predictive accuracy of a model
by examining the model’s ability to predict new data. The method involves fitting the model to all
but one observation, and then examining then model’s ability to reproduce the observation that had
been left out. This process is extremely cumbersome. Fortunately, there are indicies available that
approximate the results of the cross validation. One such index, that can be easily computed using
the RStan package is the leave one out information criterion (LOO-IC). The LOO-IC is interpreted
such that a lower value indicates a better trade off between fit and complexity. Our analysis revealed
that the LOO-IC for the hypothesized model (estimate = 22396.9, SE = 222.2) was lower for than the
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LOO-IC for the alternative model (estimate = 24529.2, SE = 148.6)4. This result suggests that the
hypothesized model indeed strikes a better balance between fit and complexity than the alternative,
linear model.

It is important to emphasize that any quantitative index should be interpreted in the context
of theoretical plausibility (Jacobs & Grainger, 1994; Myung & Pitt, 1997). Plausibility refers to the
degree to which the assumptions represented in the model are theoretically justifiable. Researchers
should strive to ensure that the model’s assumptions are consistent with previous findings and to
avoid structures in the model that are not necessary to explain the phenomenon (Murphy & Russell,
2017). No quantitative index will be able to measure theoretical plausibility. The onus is on the
researcher to determine whether a model is an accurate approximation of the process the model
purports to represent. These considerations should be carefully weighed against the ability of the
model to parsimoniously account for the data.

Step 4: Interpreting the Parameter Estimates

Once the researcher has established that the model accurately captures the empirical results
and provides a better explanation of the data than competing models, they will likely wish to in-
terpret the model’s parameters. For example, the researcher may wish to determine the extent to
which changes in goal-performance discrepancy during goal striving lead to subsequent changes in
effort. In this case, they would interpret the β parameter. However, there are different ways that
the model can be parameterized, and the choices that are made regarding the parameterization of
the model impact the interpretations that can be made. One option is to estimate parameters at the
sample-level, such that every participant is described by a single set of parameters. The researcher
may also wish to model differences in the parameters between specific groups of participants (e.g.,
conditions of an experimental manipulation) in order to ascertain whether parameters differ across
groups. We begin this section by interpreting the parameters from the hypothesized model in the
analyses above, in which the parameters were estimated at the sample level. We then show how this
model can be extended to capture differences between experimental conditions.

Sample-level model

The simplest way to parameterize a computational model is to assume that every participant
in the sample can be described by the same set of parameters. Such a model would assume, for
example, that every participant responds to changes in goal-performance discrepancy with the same
adjustment in effort, acquires skill at the exact same rate, and so on. We refer to models parame-
terized in this way as sample-level models, because the parameters are estimated and interpreted at
the level of the sample. A sample-level model produces a posterior distribution for each estimated
parameter which describes the most probable values of the relevant parameter. To illustrate, the top
row of Figure 6 shows the posterior distributions for the β, δ, and λ parameters (see Appendix C for
more details regarding the parameter estimates). Parameter values for which the posterior density
is higher are more probable. As can be seen, the most probable values of β lie within the range of

4Another commonly used information criterion for comparing Bayesian models is the Watanabe-Akaike Information
Criterion (also known as the “Widely applicable information criterion”; Watanabe, 2010). The WAIC is an approximation
to the LOO-IC, so these two indicies will generally yield similar results. In this analysis, the WAIC produced nearly
identical results to the LOO-IC.
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Figure 6. Posterior distributions on the β, δ, and λ parameters. The top and bottom rows display
the parameter estimates from the sample-level and condition-level model respectively.

about 0 to 0.15. The most probable values of δ lie within the range of about 0.04 to 0.12. Finally,
the most probable values of λ lie within the range of about -0.5 to 1.0.

One commonly used way of summarizing the most probable parameter values is by calculat-
ing the 95% credible interval for each parameter. In the above model, the CI on β is 0.026 to 0.124,
the CI on δ is 0.042 to 0.102, and the CI on λ is -0.242 to 0.840. The 95% highest density interval
(HDI; also referred to as the highest posterior density or HPD interval) is another commonly used
interval for summarizing the posterior distribution. The 95% HDI represents the shortest possible
interval containing 95% of the posterior density, and will therefore always include the most proba-
ble parameter values (Kruschke, Aguinis, & Joo, 2012). In the above model, the HDI on β is 0.029
to 0.125, the HDI on δ is 0.040 to 0.098, and the HDI on λ is -0.241 to 0.843. The CI and HDI
each has advantages and disadvantages (e.g., see Kruschke, 2015), but for symmetrical distributions
(e.g., β and λ) the two intervals will be very similar.

The CI or HDI is often used to decide whether particular parameter values should be accepted
or rejected. For example, intervals that exclude zero are often taken as evidence that the parameter
value is different from zero (Kruschke et al., 2012). This approach can be extended to any parameter
value the researcher wishes to consider. For example, one could use this method to examine whether
a weight parameter (i.e., a multiplier) is different from 1 or whether a probability parameter is
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different from 0.5. Another simple way to quantify the evidence for a parameter being either greater
than or less than a particular value is to determine the percentage of the posterior density that is
above or below that value (Kruschke, 2015). For example, 99.8% of the posterior distribution on
β is greater than 0. This, combined with the fact that the CI and HDI both exclude 0, would
suggest that, on average, people indeed respond to reductions in goal-performance discrepancy by
withdrawing effort. Contrast this result with the λ parameter, for which both the CI and HDI include
0, and for which only 87.8% of the posterior distribution is greater than 0. On the basis of these
findings, we would not reject 0 as a plausible value for the λ parameter. This means that we cannot
conclude that participants have an overall bias that leads them to set either risk-seeking or risk-
averse goals. Although interpreting the posterior distributions as we have here is informative, it
should be noted that some have advocated against making inferences based only on a parameter’s
posterior distribution and instead have advocated for inferences about parameters to be based on
nested model comparisons (e.g., Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016).

Condition-level model

Although the sample-level model described above is useful for understanding the behavior of
a single group of participants, many research questions require the consideration of multiple groups.
For example, in the Gee et al. (2018) study, goal framing was manipulated between participants.
For half of the participants, the goal was framed in approach terms. For these participants, the goal
was expressed as the minimum number of correct decisions the participant needed to achieve. For
the other half, the goal was framed in avoidance terms. In this case, the goal was expressed as the
maximum number of incorrect decisions the participant was allowed to make. One of Gee et al.’s
aims was to examine whether the goal revision process differs between approach and avoidance
contexts.

Answering this type of question requires a model in which unique parameters are estimated
separately for each experimental condition, which we refer to as a condition-level model. Fortu-
nately, the sample-level model described above can easily be extended to estimate separate param-
eters for each condition. The bottom row of Figure 6 shows the approximate posterior distributions
from a model in which β, δ, and λ were estimated at the condition level.

As can be seen, the posterior distributions on β for the approach group (illustrated by the pink
distribution) and the avoidance group (the green distribution) are almost completely overlapping.
The same is true for the δ parameter. The fact that the approach and avoidance distributions overlap
suggests that there are virtually no differences between approach and avoidance groups in terms of
the degree to which people respond to reductions in goal-performance discrepancy by decreasing
effort (β) and the rate at which skill is acquired (δ). However, there is some separation between the
posteriors on λ between the approach and avoidance groups, suggesting that risk preference may
not be the same across these conditions.

To make inferences about differences in parameter values between conditions, we need to
examine the posterior distribution on the difference between parameters in the approach and avoid-
ance conditions. This is done by calculating, for each posterior sample, a variable that is equal to
the sampled parameter value for the approach condition minus the sampled value for the avoidance
condition. This yields a difference score for each posterior sample, which can be used to generate a
posterior distribution of the difference score. The posterior on the difference scores for each param-
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eter is illustrated by the blue distribution in Figure 6. As can be seen, the posteriors on the difference
scores for the β and δ parameters indicate that 0 is a plausible value for each of these parameters.
For the β difference score, the CI is -0.025 to 0.004, the HDI is -0.025 to 0.004, and the percentage
of the distribution greater than 0 is 9.2 (i.e., 90.8% of the distribution falls below 0). For the δ
difference score, the CI is -0.021 to 0.033, the HDI is -0.020 to 0.034, and the percentage greater
than 0 is 68.8. These results indicate that it would be plausible to assume that β and δ are the same
across approach and avoidance groups. By contrast, the posterior on the λ difference score suggests
that there is a difference in this parameter between the two groups (CI: [0.373, 1.878]; HDI: [0.371,
1.878], % > 0: 99.9). This finding is consistent with Gee et al. (2018)’s results and suggests that
people have a higher preference for setting risky goals (i.e., goals higher than one’s expected perfor-
mance) when pursuing approach goals compared to when pursuing avoidance goals. This analysis
illustrates how the posterior distribution can be used to compare components of a dynamic process
across groups of participants.

It is important to note that there are a range of more complex parameter structures that can
be implemented to help answer more specific research questions. For example, researchers wishing
to examine individual differences in process components can do so via a hierarchical model. A
hierarchical model simultaneously captures variation in parameters between participants, but also
allows for inferences to be made about the group(s) as a whole (Kruschke, 2015; Turner et al., 2013;
Vincent, 2016). Alternatively, some researchers may wish to identify subgroups of participants who
behave similarly, without any priors knowledge of group membership. This can be achieved using
a mixture model (Bartlema, Lee, Wetzels, & Vanpaemel, 2014).

Discussion

Dynamic theories have become increasingly influential in the organisational sciences. How-
ever, such theories can be difficult to test, because they often describe complex, multilevel processes
that operate reciprocally over time, with different sub-processes operating at different levels of anal-
ysis and exerting both top-down and bottom-up effects. We propose that computational modeling
offers a more complete approach to testing theories, because it provides a direct integration between
the theory itself, the model that is used to operationalize the theory, and the empirical data that is
used to test the theory.

In this paper, we demonstrated how computational modeling can be used to test this type
of theory. We began by translating a conceptual theory into a computational model. The model
described the mechanisms by which effort regulation exerts bottom-up effects on the goal revision
process. We then demonstrated four steps involved in testing the computational model. The first
step is to simulate the model to examine whether the model can reproduce the phenomenon that they
theory purports to explain and to generate predictions that can be tested empirically. The second
step is to fit the model to the empirical data such as that generated by an experiment or observational
study. The goal of this step is to estimate the model’s parameter values and to quantify the degree to
which the predictions of the model correspond to the data. The third step is to compare the model to
alternatives in order to rule out competing explanations. The fourth step is to interpret the model’s
parameter values in order to quantify particular components of the process. In the next sections, we
discuss the applicability of this approach to other areas of organizational sciences, and then address
associated challenges.



TESTING DYNAMIC, MULTILEVEL THEORY 25

A General Approach

The approach we advocate in this paper is a general one. It is not specific to the research
question we investigated or the level of analysis at which the processes we examined operate. Our
example explored how the effort regulation process that operates over time within an individual goal
striving episode influences the higher level goal striving process that operates across a series of goal
striving episodes. It may also, however, be the case that these processes influence, and are influenced
by, processes that operate at the group or team level. For example, the performances of individual
group members likely contribute to the formation of group norms (a bottom-up effect), which may in
turn influence goals that are set by other group members (a top-down effect; Flynn & Amanatullah,
2010; Morgenroth, Ryan, & Peters, 2015). The approach we described above could be applied to
examine such processes by extending the computational model so that it includes multiple group
members each pursuing their own goals. The model might test different mechanisms by which the
performances of individual members lead to the emergence of a shared performance norm. It also
might examine different explanations for how group norms influence the goals of the individual
members.

This approach can also be applied to help answer macro-level research questions. For exam-
ple, one might use this approach to test McKinley et al. (2014)’s theory of how organisations respond
to episodes of decline. Their theory describes a feedback process that operates at the organization
level. According to their theory, the ways in which organizations pursue innovation influence the
trajectory of the decline. Organisational decline impacts innovation flexibility and management
rigidity, and these factors feed back and determine whether the organisational decline turns around
or enters a downward spiral. This type of theory is highly amenable to refinement and testing using
computational modeling because it explicitly specifies the patterns of change over time as well as
the causes and consequences of these patterns.

Another example of a theoretical framework for which the approach demonstrated in this
paper might be useful is Helfat and Peteraf (2003)’s model of the capability lifecycle. This model
describes the organization-level process through which capabilities evolve over time. According
to the model, capabilities develop over three stages–a founding stage, a development stage, and
a maturity stage–with the level of capability increasing rapidly over the first two stages and then
leveling off in the third stage. The model predicts several ways in which firms respond to external
factors that influence the trajectory of capability development. For example, threats to capability
such as a decrease in demand might lead a firm to redeploy the capability in a new market. As a
first step, a computational model could be used to simulate different capability threats and examine
whether a simulated firm responds in the manner that is predicted by the theory.

Future work might also use the approach demonstrated in this paper to test multilevel the-
ories that describe so-called “micro to macro” processes, in which the actions and interactions of
individual employees have emergent effects at the organization level. Such processes are relevant
to research on “mircofoundations”, which focuses on tracing organizational-level phenomena back
to individual-level antecedents (Barney & Felin, 2013; Felin, Foss, & Ployhart, 2015). This re-
search has become increasingly influential in the management, strategy, and organization theory
literatures. For example, Nickerson and Zenger (2008) presented a theory that described how envy
resulting from social comparisons between managers influences the structure of the organization and
its activities. This theory therefore proposes a bottom-up process by which a dyad- or group-level
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phenomenon (manager social comparison) gives rise to an organization-level phenomenon (orga-
nization structure and activities). Another example is the model introduced by Helfat and Peteraf
(2015), which explains how the cognitive ability of individual managers (an individual-level phe-
nomenon) can impact the performance of the firm as a whole (an organization-level phenomenon).

More generally, the organizational sciences have paid increasing attention to bottom-up pro-
cesses where lower-level entities exert influence on the context in which they are embedded (e.g.,
Kozlowski et al., 2013; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2016). Although bottom-up
processes are often assumed by theory, they are challenging to examine quantitatively because it is
difficult to represent this sort of process using conventional multilevel models. As a result, most
of the work on bottom-up processes has been qualitative. Recently, computational modeling has
been increasingly used as a tool to generate predictions regarding bottom-up processes (e.g., Grand
et al., 2016). However, it is rarely the case that these models are tested against empirical data in
the manner we have shown. The approach we have demonstrated offers a way to more directly
test multilevel theories that describe bottom-up processes. This approach may open up avenues for
future research to answer questions that cannot be answered using traditional multilevel methods.
Such questions might involve performing quantitative model comparisons to examine which model
most accurately characterizes a bottom-up process. For example, one might test different models
to examine whether team performance norms more strongly dictated by the maximum performance
achieved by any member, the minimum, or some representation of the prototypical performance.
Other questions might rely on parameter estimation to quantify components of a bottom-up pro-
cess. For example, one might use this approach to examine how rapidly team norms form, and how
the rate of norm formation is influenced by factors such as managerial involvement in goal setting
or the degree of competition between team members.

Challenges

Despite the many opportunities we believe that this approach offers, there are some chal-
lenges that should be considered. First, readers more accustomed to programs with graphical user
interfaces such as SPSS, AMOS, or JASP may find that it takes time to become familiar with the
Stan syntax. On the continuum from high level platform in which a handful of built-in analyses
can be executed by button press (e.g., SPSS) to lower level programming languages that require the
user to code the entire analysis from scratch (e.g., C++), Stan lies somewhere in the middle. Stan
has all the functionality required to implement the MCMC algorithm that generates the parameter
estimates built in to the program, but it requires the user to build the model from the ground up. This
process is more involved than simply specifying a set of variables that are assumed to be related.
However, it is the control over the model that makes the approach so flexible. This control gives
the researcher the ability to translate a set of theoretical assumptions directly into a computational
model that can be fit to data, enabling a rigorous test of the theory to be conducted.

A second challenge is the computational demands associated with this approach. Although
the Bayesian approach has the useful feature of being able to quantify uncertainty in model param-
eters, as opposed to simply delivering a point estimate, this advantage comes at a cost. The MCMC
algorithm that underlies this approach can require a long time to run. For example, the analyses
presented in this paper ran for just under an hour. For models that are more complex, have more
parameters, or that are being applied to larger datasets, it is not uncommon for the analysis to take
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several hours to run. This time frame can be challenging for analyses that require comparing a large
number of alternative models. Fortunately, Stan has several features that help speed up the process,
such as built-in parallelization. Additionally, much of this process can be automated.

A third challenge that is important to consider concerns the necessity of the prior distribution.
The ability to incorporate prior information into the analysis is a useful feature of the Bayesian
framework. However, the prior must be carefully considered, because the researcher’s choice of
prior influences the results of the analysis (see Vanpaemel, 2010). Priors that are too narrowly
concentrated on a particular region of the parameter space may mean that other parameter values
more compatible with the data are overlooked in the analysis. Assuming that priors are reasonable,
the effect of the prior on the posterior parameter estimates can be overcome by analyzing more data.
However, this is not the case for many of the methods used for model comparison (e.g., the Bayes
factor). Because the prior in part determines the model’s flexibility, it has a pronounced impact on
the degree to which the model is punished for its complexity (Vandekerckhove et al., 2015). As a
result, the choice of prior can influence the results of the model comparison. For these reasons, it is
important that priors are realistic, and where possible, informed by theory and previous research.

A fourth challenge is the problem of measurement. The need for valid measurement of con-
structs is just as important when analyzing data using computational models as it is when conducting
traditional empirical research. One notable difference between the two approaches, however, is that
computational models do not require a measure for every construct in the model. For example, we
could implement a version of the model above in which effort is treated as an unobserved construct.
Treating variables as unobserved can be a useful option for modeling constructs that are difficult
to measure. The downside, however, is that this reduces the number of data points that inform the
parameter estimates. Having fewer data will generally decrease the precision of the parameter es-
timates and reduce the ability to differentiate between competing models. Thus, there may be a
trade-off between the desire to incorporate as much information as possible into the analysis and
the desire to avoid less valid information such as inadequately measured constructs.

Conclusion

For cumulative theoretical progress to be made, theories must be able to be subjected to
rigorous tests using models that provide an accurate representation of the process described by
the theory. This makes testing dynamic, multilevel theories difficult, because the processes that
these theories describe are often difficult to represent using standard multilevel models. We have
presented an approach to testing this type of theory that involves simulating computational models,
fitting them to empirical data, comparing alternative models, and interpreting parameter estimates.
We hope that this approach helps promote a shift from thinking at the level of the variables to
thinking at the level of the model as a whole. We believe such an approach will ultimately accelerate
theoretical progress by enhancing our ability to develop, test, reject, and refine dynamic, multilevel
theories.
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Appendix A: Likelihood Function for Hypothesized Model

In order to fit the computational model described in the paper to the data, a likelihood function
needs to be specified. The likelihood function describes the probability of the data having been
observed given the parameter values being considered. This function is necessary because it enables
the algorithm to determine how probable different parameter values are given the data. In our
analysis, the likelihood is informed by three variables in the data: perceived effort, performance,
and goal level. As is common among statistical models of time series data, we specify separate
functions for the first observation in the time series and the change in the observed variable across
subsequent observations. For goal level, the first observation in the time series is the first goal
striving episode. The likelihood function for these observations is defined as follows:

Goalj=1 ∼ Normal(Goal0, σGoal0). (8)

According to the statement above, the observed goal level for episode 1 is normally distributed
with a mean equal to the Goal0 parameter and with a standard deviation parameter denoted σGoal0 .
The likelihood function describing changes in goal level over subsequent episodes is specified as
follows:

∆Goalj ∼ Normal(∆Goalj
∧

, σ∆Goal), (9)
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for episodes where j > 1. According to the statement above, the observed changes in goal level
across subsequent episodes are normally distributed with a mean equal to the change in goal level
that is predicted by the model, denoted ∆Goalj

∧
, and with a standard deviation parameter denoted

σ∆Goal.

For the perceived effort variable, the first observation in the time series occurs after the first
time window of each goal striving episode (i.e., time 1). The likelihood function for these observa-
tions is defined as follows:

Efforti=1,j ∼ Normal(Effort0, σEffort0). (10)

According to the statement above, the perceived effort observed for the first observation of goal
striving episode j is normally distributed with a mean equal to the Effort0 parameter and with a
standard deviation parameter denoted σEffort0 . The likelihood function describing the changes in
effort over subsequent time windows in each goal striving episode is specified as follows:

∆Efforti,j ∼ Normal(∆Efforti,j
∧

, σ∆Effort), (11)

for observations where i > 1. According to the statement above, the observed changes in perceived
effort across observations after time 1 in each goal striving episode are normally distributed with a
mean equal to the change in effort that is predicted by the model, denoted ∆Efforti,j

∧
, and with a

standard deviation parameter denoted σ∆Effort.

The initial level of the performance variable is constrained by the task to equal 0. Because of
this, the likelihood of the performance variable can be captured using a single function that describes
the change in performance across time windows with each goal striving episode:

∆Perfi,j ∼ Normal(∆Perfi,j
∧

, σ∆Perf ). (12)

According to the statement above, the observed changes in performance across successive obser-
vations in each goal striving episode are normally distributed with a mean equal to the change in
performance that is predicted by the model, denoted ∆Perfi,j

∧
, and with a standard deviation pa-

rameter denoted σ∆Perf .

Appendix B: Priors

Each parameter that is estimated from the data, including the standard deviation parameters
in the likelihood functions, requires its own prior distribution. The priors used for the estimated pa-
rameters of the hypothesized model are shown in Table B1. For the parameters that have both lower
and upper bounds (i.e., Effortbl, α, Effort0, δ, θ, and Goal0), we specify uniform distributions
as priors. For the parameters that can take on any value, we specify normally distributed prior dis-
tributions. For the parameters that can only take on only positive values but have no upper bound
(e.g., the standard deviation parameters), we specify zero-truncated normal prior distributions.

As can be seen, all parameters that have normal or truncated normal priors have distributions
with means of 0 and standard deviations of 2, except γ. The γ parameter represents the point on the
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Table B1
Priors for the Estimated Parameters

Parameter Distribution Family Mean SD Lower Bound Upper Bound
Effortbl Uniform 0 10
α Uniform 0 1
β Normal 0 2 None None
Effort0 Uniform 0 10
Skill0 Truncated Normal 0 2 0 None
∆Skill Truncated Normal 0 2 0 None
δ Uniform 0 1
κ Normal 0 2 None None
γ Normal 5 2 None None
θ Uniform 0 1
λ Normal 0 2 None None
Goal0 Uniform 0 10
σEffort0 Truncated Normal 0 2 0 None
σ∆Effort Truncated Normal 0 2 0 None
σ∆Perf Truncated Normal 0 2 0 None
σGoal0 Truncated Normal 0 2 0 None
σ∆Goal Truncated Normal 0 2 0 None

effort rating scale at which half of the maximum performance change is achieved. We set the mean
of the prior on γ to 5 because this is the midpoint of the effort rating scale (which ranges from 0 to
10). The γ prior therefore represents the assumption that people can achieve half of the maximum
performance change with a moderate level of effort.

Note that we do not directly estimate the maximum achievable skill level. Instead, we re-
parameterized the model so that it estimates a parameter that represents the difference between
the initial skill level (Skill0) and the maximum achievable skill level (Skillmax). This difference
parameter is denoted ∆Skill and represents the extent to which skill level changes from its initial
to its maximum value. Skillmax is calculated by adding Skill0 and ∆Skill for each sample. The
reason for estimating ∆Skill instead of Skillmax is that, by constraining ∆Skill to be positive, we
ensure that Skillmax is always greater than Skill0. This constraint would be much less efficient to
implement if we were to estimate Skillmax directly.

Appendix C: Summary of RStan Output

Stan returns an object that contains samples from the posterior distribution for each parameter
in the model. The RStan package provides a summary of each posterior, which is shown below for
the hypothesized model. As can be seen in the example output below, the summary contains the
posterior mean, the standard error of that mean, and the standard deviation of the posterior. It also
displays the 2.5%, 25%, 50%, 75%, and 97.5% quantiles of the distribution.

1 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
2 effort_bl 6.355 0.003 0.143 6.083 6.261 6.356 6.447 6.646 2029.048 1.002
3 alpha 0.378 0.002 0.098 0.208 0.309 0.369 0.440 0.593 2158.462 1.001
4 beta 0.072 0.001 0.025 0.026 0.055 0.072 0.088 0.124 2095.059 1.002
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5 effort_0 6.582 0.002 0.103 6.379 6.513 6.581 6.651 6.781 2620.726 1.001
6 skill_0 3.578 0.015 0.729 2.350 3.060 3.497 4.034 5.216 2319.383 1.002
7 skill_change 4.185 0.019 0.869 2.688 3.562 4.098 4.715 6.143 2137.001 1.001
8 delta 0.069 0.000 0.015 0.042 0.059 0.068 0.078 0.102 4761.500 1.000
9 kappa 3.408 0.014 0.712 2.249 2.897 3.322 3.826 5.050 2681.321 1.001

10 gamma 6.748 0.004 0.152 6.471 6.641 6.741 6.849 7.070 1725.576 1.003
11 theta 0.625 0.003 0.221 0.168 0.469 0.639 0.802 0.980 4012.861 1.001
12 lambda 0.294 0.005 0.270 -0.242 0.124 0.292 0.466 0.840 2791.598 1.000
13 goal_0 4.835 0.005 0.270 4.292 4.651 4.834 5.013 5.363 3203.900 1.000
14 sigma_effort_0 2.448 0.001 0.069 2.318 2.400 2.447 2.495 2.589 5921.674 1.000
15 sigma_effort_change 1.689 0.000 0.024 1.640 1.673 1.689 1.705 1.738 6138.292 0.999
16 sigma_performance_change 0.928 0.000 0.012 0.904 0.920 0.928 0.936 0.951 5539.911 0.999
17 sigma_goal_0 2.119 0.003 0.192 1.781 1.986 2.103 2.237 2.547 5667.437 1.000
18 sigma_goal_change 1.471 0.001 0.046 1.387 1.441 1.471 1.501 1.564 5662.381 0.999

The output also provides some information to help assess model convergence. The number
of effective samples (n_eff) is a measure of the information contained in the posterior samples
that accounts for the autocorrelation between neighboring samples in each MCMC chain. MCMC
chains tend to be autocorrelated because each sample in part depends on the previous sample. The
number of effective samples represents the number of independent samples that would produce an
equivalent amount of information to the set of samples obtained. If there is so little autocorrelation
that samples are effectively independent, the number of effective samples will be approximately
equal to the total number of samples (4000 in this example, which is the RStan default). The final
piece of information provided is the potential scale reduction factor (Rhat; Brooks & Gelman, 1998;
Gelman & Rubin, 1992). This gives an indication of the extent to which the chains converged on
the same region of the parameter space. As the chains approach convergence, Rhat approaches
one. A common rule of thumb is that Rhat should be less than 1.1 before any inferences are made
based on the posteriors (Kruschke et al., 2012). Note that this convergence diagnostic is only an
approximation, and is not without limitations. For example, it has been criticized for failing to
detect non-convergence in certain types of multi-model distributions (Woodard, 2007).




