239 research outputs found

    Preferring and Detecting Face Symmetry: Comparing Children and Adults Judging Human and Monkey Faces

    Get PDF
    Background: Visual symmetry is often found attractive. Symmetry may be preferred either due to a bias in the visual system or due to evolutionary selection pressures related to partner preference. Simple perceptual bias views predict that symmetry preferences should be similar across types of stimuli and unlikely to be related to factors such as age. Methods: The current study examined preferences for symmetry across age groups (pre-puberty vs post-puberty) and stimuli type (human face vs monkey face). Pairs of images manipulated for symmetry were presented and participants asked to choose the image they preferred. Participants repeated the task and were asked to detect symmetry. Results: Both age of observer and stimuli type were associated with symmetry preferences. Older observers had higher preferences for symmetry but preferred it most in human vs monkey stimuli. Across both age groups, symmetry preferences and detection abilities were weakly related. Conclusions: The study supports some ideas from an evolutionary advantage view of symmetry preference, whereby symmetry is expected be higher for potential partners (here human faces) and higher post-puberty when partner choice becomes more relevant. Such potentially motivational based preferences challenge perceptual bias explanations as a sole explanation for symmetry preferences but may occur alongside them

    Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease

    Get PDF
    Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are collectively the most frequent autosomal-recessive neurodegenerative disease of childhood, but the underlying cellular and molecular mechanisms remain unclear. Several lines of evidence have highlighted the important role that non-somatic compartments of neurons (axons and synapses) play in the instigation and progression of NCL pathogenesis. Here, we report a progressive breakdown of axons and synapses in the brains of two different mouse models of NCL: Ppt1−/− model of infantile NCL and Cln6nclf model of variant late-infantile NCL. Synaptic pathology was evident in the thalamus and cortex of these mice, but occurred much earlier within the thalamus. Quantitative comparisons of expression levels for a subset of proteins previously implicated in regulation of axonal and synaptic vulnerability revealed changes in proteins involved with synaptic function/stability and cell-cycle regulation in both strains of NCL mice. Protein expression changes were present at pre/early-symptomatic stages, occurring in advance of morphologically detectable synaptic or axonal pathology and again displayed regional selectivity, occurring first within the thalamus and only later in the cortex. Although significant differences in individual protein expression profiles existed between the two NCL models studied, 2 of the 15 proteins examined (VDAC1 and Pttg1) displayed robust and significant changes at pre/early-symptomatic time-points in both models. Our study demonstrates that synapses and axons are important early pathological targets in the NCLs and has identified two proteins, VDAC1 and Pttg1, with the potential for use as in vivo biomarkers of pre/early-symptomatic axonal and synaptic vulnerability in the NCLs

    Registration of ‘LCS Compass’ Wheat

    Get PDF
    ‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (Triticum aestivum L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (Rht1) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha−1 that was similar to ‘Vision 30’ (4697 kg ha−1). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha−1) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha−1). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha−1 and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States

    Ricin Toxicokinetics and Its Sensitive Detection in Mouse Sera or Feces Using Immuno-PCR

    Get PDF
    Ricin (also called RCA-II or RCA(60)), one of the most potent toxins and documented bioweapons, is derived from castor beans of Ricinus communis. Several in vitro methods have been designed for ricin detection in complex food matrices in the event of intentional contamination. Recently, a novel Immuno-PCR (IPCR) assay was developed with a limit of detection of 10 fg/ml in a buffer matrix and about 10-1000-fold greater sensitivity than other methods in various food matrices.In order to devise a better diagnostic test for ricin, the IPCR assay was adapted for the detection of ricin in biological samples collected from mice after intoxication. The limit of detection in both mouse sera and feces was as low as 1 pg/ml. Using the mouse intravenous (iv) model for ricin intoxication, a biphasic half-life of ricin, with a rapid t(1/2)α of 4 min and a slower t(1/2)β of 86 min were observed. The molecular biodistribution time for ricin following oral ingestion was estimated using an antibody neutralization assay. Ricin was detected in the blood stream starting at approximately 6-7 h post- oral intoxication. Whole animal histopathological analysis was performed on mice treated orally or systemically with ricin. Severe lesions were observed in the pancreas, spleen and intestinal mesenteric lymph nodes, but no severe pathology in other major organs was observed.The determination of in vivo toxicokinetics and pathological effects of ricin following systemic and oral intoxication provide a better understanding of the etiology of intoxication and will help in the future design of more effective diagnostic and therapeutic methods
    corecore