89 research outputs found
An Animal Model of Cutaneous Cyst Development Enables the Identification of Three Quantitative Trait Loci, Including the Homologue of a Human Locus (TRICY1)
Brief Summary Using inbred BN and LE/Stm rats susceptible and resistant, respectively, to chemically induced cutaneous cyst development we were able to further unveil the genetic architecture of inherited multiple cyst formation. N-methyl-N-nitrosourea-treated (BN x LE) F2 intercross rats proved to develop differential numbers of cutaneous cysts, demonstrating epidermal, trichilemmal and verrucous keratinization types. Male rats developed significantly more cysts per animal than females. QTL interval mapping yielded three loci on rat chromosomes 1, 8 and 11 (Ccd1, Ccd2, Ccd3) linked to cutaneous cyst formation. Ccd2 proved to be homologous to the human TRICY1 region which could further be narrowed down by genome comparison in both species. It contains 11 genes with evidence of expression in human keratinocytes.Non peer reviewe
PLZF induces an intravascular surveillance program mediated by long-lived LFA-1–ICAM-1 interactions
PLZF-expressing NKT cells establish residence at intravascular locations, failing to enter the circulation because of constitutive interactions with LFA-1 and ICAM-1
Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma – analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM
Background
PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome.
Methods
Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28–8; cutoff ≥5%) and stratified by tissue type.
Findings
Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138–0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311–1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310–0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307–0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467–1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305–0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555–1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698–1.681; P = 0.72).
Interpretation
For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making.
Funding
Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA)
Clinical, histopathological and molecular features of dedifferentiated melanomas:An EORTC Melanoma Group Retrospective Analysis
PURPOSE: Dedifferentiated melanoma (DedM) poses significant diagnostic challenges. We aimed to investigate the clinical, histopathological and molecular features of DedM. Methylation signature (MS) and copy number profiling (CNP) were carried out in a subgroup of cases.PATIENTS AND METHODS: A retrospective series of 78 DedM tissue samples from 61 patients retrieved from EORTC (European Organisation for Research and Treatment of Cancer) Melanoma Group centres were centrally reviewed. Clinical and histopathological features were retrieved. In a subgroup of patients, genotyping through Infinium Methylation microarray and CNP analysis was carried out.RESULTS: Most patients (60/61) had a metastatic DedM showing most frequently an unclassified pleomorphic, spindle cell, or small round cell morphology akin to undifferentiated soft tissue sarcoma, rarely associated with heterologous elements. Overall, among 20 successfully analysed tissue samples from 16 patients, we found retained melanoma-like MS in only 7 tissue samples while a non-melanoma-like MS was observed in 13 tissue samples. In two patients from whom multiple specimens were analysed, some of the samples had a preserved cutaneous melanoma MS while other specimens exhibited an epigenetic shift towards a mesenchymal/sarcoma-like profile, matching the histological features. In these two patients, CNP was largely identical across all analysed specimens, in line with their common clonal origin, despite significant modification of their epigenome.CONCLUSIONS: Our study further highlights that DedM represents a real diagnostic challenge. While MS and genomic CNP may help pathologists to diagnose DedM, we provide proof-of-concept that dedifferentiation in melanoma is frequently associated with epigenetic modifications.</p
Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype
Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a precise delineation, although challenging in some instances, is relevant.
Methods: We examined the value of DNA-methylation profiling and copy number analysis for separating these tumors. DNA-methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were compared with DNA-methylation data generated from 196 tumors encompassing potential histologic mimics like cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originating from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondrosarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12).
Results: DNA-methylation profiling did not separate AFX from PDS. The DNA-methylation profiles of the other cases, however, were distinct from AFX/PDS. They reliably assigned to subtype-specific DNA-methylation clusters, although overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar frequency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), whereas amplifications were non-recurrent and overall rare (5/32).
Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could demonstrate the diagnostic value of DNA-methylation profiling to delineating AFX/PDS from potential mimics. However, the assessment of certain histologic features remains crucial for separating PDS from AFX
Clinical practice guidelines for the diagnosis and surveillance of BAP1 tumour predisposition syndrome
BRCA1-associated protein-1 (BAP1) is a recognised tumour suppressor gene. Germline BAP1 pathogenic/likely pathogenic variants are associated with predisposition to multiple tumours, including uveal melanoma, malignant pleural and peritoneal mesothelioma, renal cell carcinoma and specific non-malignant neoplasms of the skin, as part of the autosomal dominant BAP1-tumour predisposition syndrome. The overall lifetime risk for BAP1 carriers to develop at least one BAP1-associated tumour is up to 85%, although due to ascertainment bias, current estimates of risk are likely to be overestimated. As for many rare cancer predisposition syndromes, there is limited scientific evidence to support the utility of surveillance and, therefore, management recommendations for BAP1 carriers are based on expert opinion. To date, European recommendations for BAP1 carriers have not been published but are necessary due to the emerging phenotype of this recently described syndrome and increased identification of BAP1 carriers via large gene panels or tumour sequencing. To address this, the Clinical Guideline Working Group of the CanGene-CanVar project in the United Kingdom invited European collaborators to collaborate to develop guidelines to harmonize surveillance programmes within Europe. Recommendations with respect to BAP1 testing and surveillance were achieved following literature review and Delphi survey completed by a core group and an extended expert group of 34 European specialists including Geneticists, Ophthalmologists, Oncologists, Dermatologists and Pathologists. It is recognised that these largely evidence-based but pragmatic recommendations will evolve over time as further data from research collaborations informs the phenotypic spectrum and surveillance outcomes.</p
Testing variational estimation of process parameters and initial conditions of an earth system model
We present a variational assimilation system around a coarse resolution Earth System Model (ESM) and apply it for estimating initial conditions and parameters of the model. The system is based on derivative information that is efficiently provided by the ESM's adjoint, which has been generated through automatic differentiation of the model's source code. In our variational approach, the length of the feasible assimilation window is limited by the size of the domain in control space over which the approximation by the derivative is valid. This validity domain is reduced by non-smooth process representations. We show that in this respect the ocean component is less critical than the atmospheric component. We demonstrate how the feasible assimilation window can be extended to several weeks by modifying the implementation of specific process representations and by switching off processes such as precipitation
Clinical and genetic characteristics of BAP1-mutated non-uveal and uveal melanoma
BackgroundScreening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized.MethodsA retrospective analysis of all melanomas sequenced in our department from 2014–2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome.ResultsBAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations.ConclusionIn contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective
- …