64 research outputs found

    Photosynthetic traits of freshwater lichens are consistent with the submersion conditions of their habitat

    Get PDF
    In this study, we compared the photosynthetic performance of epilithic freshwater lichens on siliceous stream rock submerged for: more than 9 (hyper-), 6–9 (meso-) or 3–6 months (sub-hydrophilic lichens). In the dry state, neither variable fluorescence nor respiration activity could be detected. In the wet state, rates of dark respiration (O2 uptake and CO2 production for immerged and in-air samples) were in the lower range of that reported for non-aquatic lichens. With 200 (under water) or 500 mmol.mx2.sx1 photosyntheticallly active photon flux density (PPFD) (aerial), photosynthesis was positive but rates were lower than that published for non-aquatic species. Under intense PPFD (2000 mmol.mx2.sx1, aerial), photo- synthesis increased in sub- but became negative in hyper-hydrophilic species. After hydration, dry samples increased photosystem II (PSII) efficiency, which reached near steady state in <6–7 min. Hyper-hydrophilic lichen took longer than sub-hydrophilic species. A long period of desiccation (4 months) had a negative effect on subsequent PSII photochemistry of hyper- but not of sub-hydrophilic hydrated lichens. When thalli were allowed to dehydrate, all types of lichens lost PSII activity after about 15–20 min. Deactivation was faster in the hyper- than in the sub-hydrophilic species. The metabolic traits presented here are thus consistent with the ecological amplitude of the freshwater lichens studied

    Genetic control of physiological traits associated to low temperature growth in sunflower under early sowing conditions

    Get PDF
    This study was conducted to identify physiological traits associated with cold tolerance in sunflower and to identify the genomic regions involved in their variation. A population of 98 recombinant inbred lines (RILs) and their two parents were sown in the field as usual sowing date (control) and one or two months earlier (long-term low temperature treatments). A trait commonly used to underlying cold tolerance related to the degree of membrane damage, as well as traits associated with growth capacity (chlorophyll content, potential photochemical efficiency of photosystem II and plant dry weight) and finally those reflecting acclimation mechanism to stress conditions (osmotic potential at full turgor, and specific leaf area) have been investigated at early development stages. Significant differences were observed among the three sowing dates for all traits. Chlorophyll content and specific leaf area are genetically associated with cold tolerance. Genetic gains were observed for chlorophyll content and osmotic potential traits in some of early sowing dates, which suggest that they could be used for cold tolerance in breeding programs. QTL analyses show that several putative genomic regions are involved in the variation of the physiological traits studied under low temperature. Major QTLs for cold tolerance associated with SSR markers such as ORS331_2 for the cell membrane stability should be checked in several environments to see if they can be used in marker-assisted selection programs

    Hydraulic conductivity and contribution of aquaporins to water uptake in roots of four sunflower genotypes

    Get PDF
    This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl2), a general AQP blocker. There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency

    Leaf Carbon Isotope Discrimination as an Accurate Indicator of Water-Use Efficiency in Sunflower Genotypes Subjected to Five Stable Soil Water Contents

    Get PDF
    Leaf carbon isotope discrimination (CID ) has been suggested as an indirect tool for breeding for water‐use efficiency (WUE ) in various crops. This work focused on assessing phenotypic correlations between WUE and leaf CID and analysing genotypic variability in four sunflower genotypes grown in a greenhouse in pots with five different stable levels of soil water content (SWC ). We measured WUE at whole plant and leaf (intrinsic) level. At whole plant level, WUE was derived from the ratio of total dry aerial biomass (BM ) to cumulative water transpired (CWT ). At leaf level, intrinsic WUE was calculated as the ratio of light‐saturated CO 2 assimilation to stomatal conductance (A /gs) in younger expanded leaves. Significant differences among the four genotypes and the five SWC s were observed for whole plant and leaf WUE and CID . Strong negative correlations were observed between whole plant WUE and CID as well as between intrinsic WUE and CID with decreasing water availability. No relationships appeared between BM production and WUE or CID . Our results can help agronomists and breeders to evaluate sunflower lines with high WUE for adaptation to drought conditions and for reducing water consumption and crop water needs. Leaf CID appears to be a pertinent and valuable trait to select sunflower genotypes with high WUE

    From farm, landscape and territory analysis to scenario exercise: an educational programme on participatory integrated analysis

    Get PDF
    Tools and methodologies have been developed to enable integrated analysis (IA) of complex issues like agro‐ecosystems and natural resources management. They are based on interdisciplinary and often on participatory approaches combining, interpreting and communicating knowledge from diverse scientific disciplines and from stakeholders. In this paper we present the original educational programme built to enable students in agronomy to implement participatory IA methods in order to deal with sustainability issues in rural territory. In this educational programme students take a professional project management situation on a given case study. One of the originality of the course programme lies in its twofold objectives: building student capacities for carrying out integrated multi‐scale analysis of complex systems and providing researchers with an operational research device which facilitates the integrated analysis of new study territories. The educational programme articulates trips in the case study region and formation modules on project management, farming systems sustainability assessment, landscape multifunctionality analysis, stakeholder analysis and interviews, territorial diagnosis and narrative scenario construction. The main objectives and methods used in these modules are presented and discussed in the light of the outcomes of the implementation of this educational programme. Discussion is focused on the main educational and research issues of this programme

    QTL analysis of yield-related traits in sunflower under different water treatments

    Get PDF
    A set of sunflower recombinant inbred lines (RILs) was used to study agronomical traits under greenhouse and field conditions each with two water treatments and three replications. The difference among RILs was significant for all the traits studied in all conditions; and water treatment × RILs interaction was also observed for most of the traits in both field and greenhouse conditions. Because of the low rate of drought stress, this part of field data are not informative. Several quantitative trait loci (QTLs) were identified for yield‐related traits with the percentage of phenotypic variance explained by QTLs (R 2) ranging from 4% to 40%. Several QTLs for grain yield per plant (GYP) under four water treatments were identified on different linkage groups, among which two were specific to a single treatment (GYPN.4.1 , GYPI.7.1 ). Three QTLs for GYP were overlapped with several QTLs for drought‐adaptative traits detected in our previous study (Poormohammad Kiani et al. 2007b). The whole results do highlight interesting genomic regions for marker‐based breeding programmes for drought tolerance in sunflower

    The effect of freezing temperature on physiological traits in sunflower

    Get PDF
    This study was conducted to identify the physiological mechanisms associated with the resistance and tolerance of young sunflower plants to freezing temperatures. The effect of overnight temperature –3°C on the maximal quantum efficiency of PSII (Fv/Fm), the relative electrolyte leakage (REL) and the osmotic potential (Ψπ) was determined in five genotypes of sunflower: C33, C98, C124 and C148 were chosen from the population of recombinant inbred lines (RILs) based on contrasted responses to low temperature, and a wild genotype 2603 that was chosen for its ability to maintain activities in cold conditions. The night temperature –3°C over the course of 10 h caused an immediate significant decrease of Fv/Fm in C33, C98, C124 and C148. In the case of genotype C98, the effect of this freezing temperature was manifested by a significant increase of REL. Significant changes of Ψπ, as a reaction to the effect of freezing temperatures, were not found in any of the monitored genotypes. The measurements of the physiological traits after 5 days of regeneration indicated the renewal of integrity of cellular structures and an increase of PSII reaction centre efficiency in all monitored genotypes. From the point of view of tolerance or sensitivity, the wild genotype 2603 showed itself as tolerant towards the tested freezing temperature, displaying insignificant differences with control plants in all monitored traits. Genotype C98 appears to be the most sensitive from the monitored set, with evident changes in two traits signalling frost damage

    Analysis of durum wheat proteome changes under marine and fungal biostimulant treatments using large-scale quantitative proteomics: A useful dataset of durum wheat proteins

    Get PDF
    Durum wheat requires high nitrogen inputs to obtain the high protein concentration necessary to satisfy pasta and semolina quality criteria. Optimizing plant nitrogen use efficiency is therefore of major importance for wheat grain quality. Here, we studied the impact on grain yield, protein concentration, and for the first time on protein composition of a marine (DPI4913) and a fungal (AF086) biostimulants applied to plant leaves. A large-scale quantitative proteomics analysis of wheat flour samples led to a dataset of 1471 identified proteins. Quantitative analysis of 1391 proteins revealed 26 and 38 proteins with a significantly varying abundance after DPI4913 and AF086 treatment, respectively, with 14 proteins in common. Major effects affected proteins involved in grain technological properties like grain hardness, in storage functions with the gluten protein gamma-gliadin, in regulation processes with transcription regulator proteins, and in stress responses with biotic and abiotic stress defense proteins. The involvement of biostimulants in the abiotic stress response was further suggested by an increase in water-use efficiency for both DPI4913 (15.4%) and AF086 (9.9%) treatments. Overall, our work performed in controlled conditions showed that DPI4913 and AF086 treatments promoted grain yield while maintaining protein concentration, and positively affected protein composition for grain quality. Data are available via ProteomeXchange with identifier PXD012469

    A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    Get PDF
    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions

    The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands

    Get PDF
    Intensively managed grasslands are globally prominent ecosystems. We investigated whether experimental increases in plant diversity in intensively managed grassland communities can increase their resource use efficiency. This work consisted of a coordinated, continental-scale 33-site experiment. The core design was 30 plots, representing 15 grassland communities at two seeding densities. The 15 communities were comprised of four monocultures (two grasses and two legumes) and 11 four-species mixtures that varied in the relative abundance of the four species at sowing. There were 1028 plots in the core experiment, with another 572 plots sown for additional treatments. Sites agreed a protocol and employed the same experimental methods with certain plot management factors, such as seeding rates and number of cuts, determined by local practice. The four species used at a site depended on geographical location, but the species were chosen according to four functional traits: a fast-establishing grass, a slow-establishing persistent grass, a fast-establishing legume, and a slow-establishing persistent legume. As the objective was to maximize yield for intensive grassland production, the species chosen were all high-yielding agronomic species. The data set contains species-specific biomass measurements (yield per species and of weeds) for all harvests for up to four years at 33 sites. Samples of harvested vegetation were also analyzed for forage quality at 26 sites. Analyses showed that the yield of the mixtures exceeded that of the average monoculture in >97% of comparisons. Mixture biomass also exceeded that of the best monoculture (transgressive overyielding) at about 60% of sites. There was also a positive relationship between the diversity of the communities and aboveground biomass that was consistent across sites and persisted for three years. Weed invasion in mixtures was very much less than that in monocultures. These data should be of interest to ecologists studying relationships between diversity and ecosystem function and to agronomists interested in sustainable intensification. The large spatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales. The database can also complement existing databases and meta-analyses on biodiversity–ecosystem function relationships in natural communities by focusing on those same relationships within intensively managed agricultural grasslands
    corecore