137 research outputs found

    Auxin transport through non-hair cells sustains root-hair development.

    Get PDF
    The plant hormone auxin controls root epidermal cell development in a concentration-dependent manner. Root hairs are produced on a subset of epidermal cells as they increase in distance from the root tip. Auxin is required for their initiation and continued growth, but little is known about its distribution in this region of the root. Contrary to the expectation that hair cells might require active auxin influx to ensure auxin supply, we did not detect the auxin-influx transporter AUX1 in root-hair cells. A high level of AUX1 expression was detected in adjacent non-hair cell files. Non-hair cells were necessary to achieve wild-type root-hair length, although an auxin response was not required in these cells. Three-dimensional modelling of auxin flow in the root tip suggests that AUX1-dependent transport through non-hair cells maintains an auxin supply to developing hair cells as they increase in distance from the root tip, and sustains root-hair outgrowth. Experimental data support the hypothesis that instead of moving uniformly though the epidermal cell layer, auxin is mainly transported through canals that extend longitudinally into the tissue

    A new metric for quantifying the relative impact of risk factors on loss of working life illustrated in a population of working dogs

    Get PDF
    In a resource-limited world, organisations attempting to reduce the impact of health or behaviour issues need to choose carefully how to allocate resources for the highest overall impact. However, such choices may not always be obvious. Which has the biggest impact? A large change to a small number of individuals, or a small change to a large number of individuals? The challenge is identifying the issues that have the greatest impact on the population so potential interventions can be prioritised. We addressed this by developing a score to quantify the impact of health conditions and behaviour problems in a population of working guide dogs using data from Guide Dogs, UK. The cumulative incidence of different issues was combined with information about their impact, in terms of reduction in working life, to create a work score. The work score was created at population-level to illustrate issues with the greatest impact on the population and to understand contributions of breeds or crossbreeds to the workforce. An individual work deficit score was also created and means of this score used to illustrate the impact on working life within a subgroup of the population such as a breed, or crossbreed generation. The work deficit scores showed that those removed for behavioural issues had a greater impact on the overall workforce than those removed for health reasons. Additionally trends over time illustrated the positive influence of interventions Guide Dogs have made to improve their workforce. Information highlighted by these scores is pertinent to the effort of Guide Dogs to ensure partnerships are lasting. Recognising that the scores developed here could be transferable to a wide variety of contexts and species, most notably human work force decisions; we discuss possible uses and adaptations such as reduction in lifespan, quality of life and yield in production animals

    Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    Get PDF
    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data

    Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts

    Get PDF
    It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation. Mechanical stimulation coupled with chemical stimulation also revealed an increase in FN fibrils around the cell periphery. Complimentary to this, fibroblasts exposed to fluid shear stress structurally rearranged pre-coated surface FN, but unstimulated and stretched cells did not. These results show that mechanical stimulation directly affected FN reorganization and recruitment, despite perturbation by chemical stimulation. Our findings will help elucidate the mechanisms of FN biosynthesis and organization by furthering the link of the role of mechanics with FN

    Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS)

    Get PDF
    The human SOD1G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3–4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved

    Early Detection of Motor Dysfunction in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Using Home Cage Running Wheels

    Get PDF
    The SOD1G93A mouse has been used since 1994 for preclinical testing in amyotrophic lateral sclerosis (ALS). Despite recent genetic advances in our understanding of ALS, transgenic mice expressing mutant SOD1 remain the best available, and most widely used, vertebrate model of the disease. We previously described an optimised and rapid approach for preclinical studies in the SOD1G93A mouse. Here we describe improvements to this approach using home cage running wheels to obtain daily measurements of motor function, with minimal intervention. We show that home cage running wheels detect reductions in motor function at a similar time to the rotarod test, and that the data obtained are less variable allowing the use of smaller groups of animals to obtain satisfactory results. This approach refines use of the SOD1G93A model, and reduces the number of animals undergoing procedures of substantial severity, two central principles of the 3Rs (replacement, reduction and refinement of animal use in research). The small group sizes and rapid timescales enable affordable large-scale therapeutic pre-screening in the SOD1G93A mouse, as well as rapid validation of published positive effects in a second laboratory, one of the major stumbling blocks in ALS preclinical therapy development

    Gastrointestinal decontamination in the acutely poisoned patient

    Get PDF
    ObjectiveTo define the role of gastrointestinal (GI) decontamination of the poisoned patient.Data sourcesA computer-based PubMed/MEDLINE search of the literature on GI decontamination in the poisoned patient with cross referencing of sources.Study selection and data extractionClinical, animal and in vitro studies were reviewed for clinical relevance to GI decontamination of the poisoned patient.Data synthesisThe literature suggests that previously, widely used, aggressive approaches including the use of ipecac syrup, gastric lavage, and cathartics are now rarely recommended. Whole bowel irrigation is still often recommended for slow-release drugs, metals, and patients who "pack" or "stuff" foreign bodies filled with drugs of abuse, but with little quality data to support it. Activated charcoal (AC), single or multiple doses, was also a previous mainstay of GI decontamination, but the utility of AC is now recognized to be limited and more time dependent than previously practiced. These recommendations have resulted in several treatment guidelines that are mostly based on retrospective analysis, animal studies or small case series, and rarely based on randomized clinical trials.ConclusionsThe current literature supports limited use of GI decontamination of the poisoned patient

    Physiological response of the retinal pigmented epithelium to 3-ns pulse laser application, in vitro and in vivo

    Get PDF
    BACKGROUND: To treat healthy retinal pigmented epithelium (RPE) with the 3-ns retinal rejuvenation therapy (2RT) laser and to investigate the subsequent wound-healing response of these cells. METHODS: Primary rat RPE cells were treated with the 2RT laser at a range of energy settings. Treated cells were fixed up to 7 days post-irradiation and assessed for expression of proteins associated with wound-healing. For in vivo treatments, eyes of Dark Agouti rats were exposed to laser and tissues collected up to 7 days post-irradiation. Isolated wholemount RPE preparations were examined for structural and protein expression changes. RESULTS: Cultured RPE cells were ablated by 2RT laser in an energy-dependent manner. In all cases, the RPE cell layer repopulated completely within 7 days. Replenishment of RPE cells was associated with expression of the heat shock protein, Hsp27, the intermediate filament proteins, vimentin and nestin, and the cell cycle-associated protein, cyclin D1. Cellular tight junctions were lost in lased regions but re-expressed when cell replenishment was complete. In vivo, 2RT treatment gave rise to both an energy-dependent localised denudation of the RPE and the subsequent repopulation of lesion sites. Cell replenishment was associated with the increased expression of cyclin D1, vimentin and the heat shock proteins Hsp27 and αB-crystallin. CONCLUSIONS: The 2RT laser was able to target the RPE both in vitro and in vivo, causing debridement of the cells and the consequent stimulation of a wound-healing response leading to layer reformation.John P. M. Wood, Marzieh Tahmasebi, Robert J. Casson, Malcolm Plunkett, Glyn Chidlo
    corecore