423 research outputs found
Natural abundance solid-state 33S NMR study of NbS3: applications for battery conversion electrodes.
We report ultra-wideline, high-field natural abundance solid-state 33S NMR spectra of the Li-ion battery conversion electrode NbS3, the first 33S NMR study of a compound containing disulfide (S22-) units. The large quadrupolar coupling parameters (CQ ≈ 31 MHz) are consistent with values obtained from DFT calculations, and the spectra provide evidence for the linear Peierls distortion that doubles the number of 33S sites
Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue
E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and
quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining
E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during
disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53
or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments
Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes
1. To determine feeding links between primary producers, invertebrates and fish, stable isotope analyses and gut content analyses of fish were conducted on the components of four shallow, eutrophic to hypertrophic, plant-dominated lakes.
2. Although separation of basal resources was possible, the diets of both fish and invertebrates were broad, comprising food from different compartments (planktonic, epiphytic/benthic), as well as from different trophic levels.
3. Mixing models were used to determine the extent to which periphyton production supported higher trophic levels. Only one species of invertebrate relied upon periphyton production exclusively.
4. Fish density affected the diets of invertebrates. The response was different for planktonic and epiphytic/benthic invertebrates. The proportion of periphyton production in the diets of zooplankton appeared to increase with fish density, whilst it decreased for other invertebrates.
5. As all zooplankton samples were collected in the open water at dusk, these results are further evidence for the diurnal horizontal migration of zooplankton. Although not conclusive, they are consistent with a behavioural response by invertebrates and zooplankton in the presence of fish
Enhanced visible light absorption in layered Cs3Bi2Br9 through mixed-valence Sn(ii)/Sn(iv) doping
Funder: Cambridge TrustMixed valence Sn doping of Cs3Bi2Br9 leads to broad visible light absorption.</jats:p
Recommended from our members
Formulation of Metal-Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility.
Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery
Lifespan extension and the doctrine of double effect
Recent developments in biogerontology—the study of the biology of ageing—suggest that it may eventually be possible to intervene in the human ageing process. This, in turn, offers the prospect of significantly postponing the onset of age-related diseases. The biogerontological project, however, has met with strong resistance, especially by deontologists. They consider the act of intervening in the ageing process impermissible on the grounds that it would (most probably) bring about an extended maximum lifespan—a state of affairs that they deem intrinsically bad. In a bid to convince their deontological opponents of the permissibility of this act, proponents of biogerontology invoke an argument which is grounded in the doctrine of double effect. Surprisingly, their argument, which we refer to as the ‘double effect argument’, has gone unnoticed. This article exposes and critically evaluates this ‘double effect argument’. To this end, we first review a series of excerpts from the ethical debate on biogerontology in order to substantiate the presence of double effect reasoning. Next, we attempt to determine the role that the ‘double effect argument’ is meant to fulfil within this debate. Finally, we assess whether the act of intervening in ageing actually can be justified using double effect reasoning
Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology
Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications
Architecture Optimization Dramatically Improves Reverse Bias Stability in Perovskite Solar Cells: A Role of Polymer Hole Transport Layers
We report that device architecture engineering has a substantial impact on
the reverse bias instability that has been reported as a critical issue in
commercializing perovskite solar cells. We demonstrate breakdown voltages
exceeding -15 V in typical pin structured perovskite solar cells via two steps:
i) using polymer hole transporting materials; ii) using a more
electrochemically stable gold electrode. While device degradation can be
exacerbated by higher reverse bias and prolonged exposure, our as-fabricated
perovskite solar cells completely recover their performance even after
stressing at -7 V for 9 hours both in the dark and under partial illumination.
Following these observations, we systematically discuss and compare the reverse
bias driven degradation pathways in perovskite solar cells with different
device architectures. Our model highlights the role of electrochemical reaction
rates and species in dictating the reverse bias stability of perovskite solar
cells
Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR)
AIM: To assess the utility of a volumetric low-dose computed tomography (CT) thorax (LDCTT) protocol at a dose equivalent to a posteroanterior (PA) and lateral chest radiograph for surveillance of cystic fibrosis (CF) patients. MATERIALS AND METHODS: A prospective study was undertaken of 19 adult patients with CF that proceeded to LDCTT at 12 and 24 months following initiation of ivacaftor. A previously validated seven-section, low-dose axial CT protocol was used for the 12-month study. A volumetric LDCTT protocol was developed for the 24-month study and reconstructed with hybrid iterative reconstruction (LD-ASIR) and pure iterative reconstruction (model-based IR [LD-MBIR]). Radiation dose was recorded for each scan. Image quality was assessed quantitatively and qualitatively, and disease severity was assessed using a modified Bhalla score. Statistical analysis was performed and p-values of <0.05 were considered statistically significant. RESULTS: Volumetric LD-MBIR studies were acquired at a lower radiation dose than the seven-section studies (0.08 ± 0.01 versus 0.10 ± 0.02 mSv; p=0.02). LD-MBIR and seven-section ASIR images had significantly lower levels of image noise compared with LD-ASIR images (p<0.0001). Diagnostic acceptability scores and depiction of bronchovascular structures were found to be acceptable for axial and coronal LD-MBIR images. LD-MBIR images were superior to LD-ASIR images for all qualitative parameters assessed (p<0.0001). No significant change was observed in mean Bhalla score between 1-year and 2-year studies (p=0.84). CONCLUSIONS: The use of a volumetric LDCTT protocol (reconstructed with pure IR) enabled acquisition of diagnostic quality CT images, which were considered extremely useful for surveillance of CF patients, at a dose equivalent to a PA and lateral chest radiograph
- …