1,929 research outputs found

    Survival of near-critical branching Brownian motion

    Full text link
    Consider a system of particles performing branching Brownian motion with negative drift μ=2ϵ\mu = \sqrt{2 - \epsilon} and killed upon hitting zero. Initially there is one particle at x>0x>0. Kesten showed that the process survives with positive probability if and only if ϵ>0\epsilon>0. Here we are interested in the asymptotics as \eps\to 0 of the survival probability Qμ(x)Q_\mu(x). It is proved that if L=π/ϵL= \pi/\sqrt{\epsilon} then for all xRx \in \R, limϵ0Qμ(L+x)=θ(x)(0,1)\lim_{\epsilon \to 0} Q_\mu(L+x) = \theta(x) \in (0,1) exists and is a travelling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when x<Lx<L and LxL-x \to \infty. The proofs rely on probabilistic methods developed by the authors in a previous work. This completes earlier work by Harris, Harris and Kyprianou and confirms predictions made by Derrida and Simon, which were obtained using nonrigorous PDE methods

    Observations of mesoscale and boundary-layer circulations affecting dust uplift and transport in the Saharan boundary layer

    No full text
    International audienceObservations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations) induced mesoscale circulations, and that mesoscale and boundary-layer circulations affected dust uplift and transport. These processes are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parameterise. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Air Layer (SAL). Mesoscale variations in winds are also shown to affect dust loadings in the boundary-layer. In a region of local uplift, with strong along-track winds, boundary-layer rolls are shown to lead to warm moist dusty updraughts in the boundary layer. Large eddy model (LEM) simulations suggest that these rolls increased uplift by approximately 30%. The modelled effects of boundary-layer convection on uplift is shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur

    Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Get PDF
    Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations) induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL). Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer. &lt;br&gt;&lt;br&gt; Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM) simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur. &lt;br&gt;&lt;br&gt; Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise

    STS in management education: connecting theory and practice

    Get PDF
    This paper explores the value of science and technology studies (STS) to management education. The work draws on an ethnographic study of second year management undergraduates studying decision making. The nature and delivery of the decision making module is outlined and the value of STS is demonstrated in terms of both teaching method and module content. Three particular STS contributions are identified and described: the social construction of technological systems; actor network theory; and ontological politics. Affordances and sensibilities are identified for each contribution and a discussion is developed that illustrates how these versions of STS are put to use in management education. It is concluded that STS has a pivotal role to play in critical management (education) and in the process offers opportunities for new forms of managin

    Effectiveness of a Sodium-Reduction Smartphone App and Reduced-Sodium Salt to Lower Sodium Intake in Adults With Hypertension: Findings From the Salt Alternatives Randomized Controlled Trial

    Full text link
    Background: Even modest reductions in blood pressure (BP) can have an important impact on population-level morbidity and mortality from cardiovascular disease. There are 2 promising approaches: the SaltSwitch smartphone app, which enables users to scan the bar code of a packaged food using their smartphone camera and receive an immediate, interpretive traffic light nutrition label on-screen alongside a list of healthier, lower-salt options in the same food category; and reduced-sodium salts (RSSs), which are an alternative to regular table salt that are lower in sodium and higher in potassium but have a similar mouthfeel, taste, and flavor. Objective: Our aim was to determine whether a 12-week intervention with a sodium-reduction package comprising the SaltSwitch smartphone app and an RSS could reduce urinary sodium excretion in adults with high BP. Methods: A 2-arm parallel randomized controlled trial was conducted in New Zealand (target n=326). Following a 2-week baseline period, adults who owned a smartphone and had high BP (≥140/85 mm Hg) were randomized in a 1:1 ratio to the intervention (SaltSwitch smartphone app + RSS) or control (generic heart-healthy eating information from The Heart Foundation of New Zealand). The primary outcome was 24-hour urinary sodium excretion at 12 weeks estimated via spot urine. Secondary outcomes were urinary potassium excretion, BP, sodium content of food purchases, and intervention use and acceptability. Intervention effects were assessed blinded using intention-to-treat analyses with generalized linear regression adjusting for baseline outcome measures, age, and ethnicity. Results: A total of 168 adults were randomized (n=84, 50% per group) between June 2019 and February 2020. Challenges associated with the COVID-19 pandemic and smartphone technology detrimentally affected recruitment. The adjusted mean difference between groups was 547 (95% CI −331 to 1424) mg for estimated 24-hour urinary sodium excretion, 132 (95% CI −1083 to 1347) mg for urinary potassium excretion, −0.66 (95% CI −3.48 to 2.16) mm Hg for systolic BP, and 73 (95% CI −21 to 168) mg per 100 g for the sodium content of food purchases. Most intervention participants reported using the SaltSwitch app (48/64, 75%) and RSS (60/64, 94%). SaltSwitch was used on 6 shopping occasions, and approximately 1/2 tsp per week of RSS was consumed per household during the intervention. Conclusions: In this randomized controlled trial of a salt-reduction package, we found no evidence that dietary sodium intake was reduced in adults with high BP. These negative findings may be owing to lower-than-anticipated engagement with the trial intervention package. However, implementation and COVID-19–related challenges meant that the trial was underpowered, and it is possible that a real effect may have been missed

    STM induced hydrogen desorption via a hole resonance

    Get PDF
    We report STM-induced desorption of H from Si(100)-H(2×1\times1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5σ\sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let

    Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire

    Get PDF
    Idiosyncratic adverse drug reactions are unpredictable, dose independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkage between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells that required HLA-B*57:01 molecules for their function. However, the mechanism by which abacavir induces this pathologic T cell response remains unclear. Here we show that abacavir can bind within the F-pocket of the peptide-binding groove of HLA-B*57:01 thereby altering its specificity. This supports a novel explanation for HLA-linked idiosyncratic adverse drug reactions; namely that drugs can alter the repertoire of self-peptides presented to T cells thus causing the equivalent of an alloreactive T cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir, and that were recognized by T cells of hypersensitive patients. The assays we have established can be applied to test additional compounds with suspected HLA linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA linked hypersensitivities as well as guide the development of safer drugs
    corecore