48 research outputs found

    Assessment of Patient Preference in Allocation and Observation of Anti-Tuberculosis Medication in three Districts in Tanzania.

    Get PDF
    The new tuberculosis (TB) treatment in Tanzania contains rifampicin for six months. Direct observation of drug intake at the health facility for this period is not feasible. Patients and health staff in three districts were interviewed to assess the burden of the current treatment strategy, and opinions on a proposed new strategy where patients are able to choose the place of treatment and the treatment supervisor, and receive treatment as a daily combination tablet. The study included 343 patients in 42 facilities. Daily collection of drugs was perceived as burdensome irrespective of distance needed to travel. Eighty percent of patients viewed medication taken at home or at a closer health facility as an improvement in TB-services. The proposed new treatment strategy was rated favorably by 85% of patients and 75% of health staff. Fifty-three percent of patients would opt for home-based treatment, and 75% would choose a family member or the spouse as treatment supporter. Home-based supervision of TB treatment with fewer drugs is an expressed preference of TB patients in Tanzania. Such a strategy is now being assessed in a pilot study. If effective and feasible, the strategy will contribute to an improved TB control strategy

    Patient-centred tuberculosis treatment delivery under programmatic conditions in Tanzania: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Directly observed therapy (DOT) remains the cornerstone of the global tuberculosis (TB) control strategy. Tanzania, one of the 22 high-burden countries regarding TB, changed the first-line treatment regimen to contain rifampicin-containing fixed-dose combination for the full 6 months of treatment. As daily health facility-based DOT for this long period is not feasible for the patient, nor for the health system, Tanzania introduced patient centred treatment (PCT). PCT allows patients to choose for daily DOT at a health facility or at their home by a supporter of choice. The introduction of fixed dose combinations in the intensive and continuation phase made PCT feasible by eliminating the risk of selective drug taking by patients and reducing the number of tablets to be taken. The approach was tested in three districts with the objective to assess the effect of this strategy on TB treatment outcomes</p> <p>Methods</p> <p>Cohort analysis comparing patients treated under the PCT strategy (registered April-September 2006) with patients treated under health-facility-based DOT (registered April-September 2005). The primary outcome was the cure rate. Differences were assessed by calculating the risk ratios. Associations between characteristics of the supporters and treatment outcomes in the group of patients opting for home-based DOT were assessed through logistic regression.</p> <p>Results</p> <p>In the PCT cohort there were 1208 patients and 1417 were included in the historic cohort. There was no significant difference in cure rates between the cohorts (risk ratio [RR]: 1.06; 95% confidence interval [CI]: 0.96-1.16). In the PCT cohort, significantly more patients had successful treatment (cure or treatment completed; RR: 1.10; 95%CI: 1.01-1.15). There were no characteristics of supporters that were associated with treatment outcome.</p> <p>Conclusion</p> <p>The PCT approach showed similar cure rates and better treatment success rates compared to daily health-facility DOT. The results indicate that there are no specific prerequisites for the supporter chosen by the patient. The programmatic setting of the study lends strong support for scaling-up of TB treatment observation outside the health facility.</p

    High Throughput Genome-Wide Survey of Small RNAs from the Parasitic Protists Giardia intestinalis and Trichomonas vaginalis

    Get PDF
    RNA interference (RNAi) is a set of mechanisms which regulate gene expression in eukaryotes. Key elements of RNAi are small sense and antisense RNAs from 19 to 26 nt generated from double-stranded RNAs. MicroRNAs (miRNAs) are a major type of RNAi-associated small RNAs and are found in most eukaryotes studied to date. To investigate whether small RNAs associated with RNAi appear to be present in all eukaryotic lineages, and therefore present in the ancestral eukaryote, we studied two deep-branching protozoan parasites, Giardia intestinalis and Trichomonas vaginalis. Little is known about endogenous small RNAs involved in RNAi of these organisms. Using Illumina Solexa sequencing and genome-wide analysis of small RNAs from these distantly related deep-branching eukaryotes, we identified 10 strong miRNA candidates from Giardia and 11 from Trichomonas. We also found evidence of Giardia short-interfering RNAs potentially involved in the expression of variant-specific surface proteins. In addition, eight new small nucleolar RNAs from Trichomonas are identified. Our results indicate that miRNAs are likely to be general in ancestral eukaryotes and therefore are likely to be a universal feature of eukaryotes

    Cell Lineage Specific Distribution of H3K27 Trimethylation Accumulation in an In Vitro Model for Human Implantation

    Get PDF
    Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation) followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3) marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion

    Chromatin-associated ncRNA activities

    Get PDF

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Partnering to fight malaria in India: Past, present and future

    No full text
    The global fight against malaria requires continual development of new tools. Collaborations in India have played a key role in MMV’s partnerships to discover, develop and deliver new medicines. Over the last decade, India has become a focal point of global medicinal chemistry, and combined with investments in basic science, this has led to the discovery of new potential drugs. India also brings significant experience to drug development, in clinical trials, but also in formulation and manufacturing. Finally, innovative new approaches in case management have streamlined impact at the level of communities and the patients
    corecore