8 research outputs found
Comprehensive Flow Cytometric Characterization of Bronchoalveolar Lavage Cells Indicates Comparable Phenotypes Between Asthmatic and Healthy Horses But Functional Lymphocyte Differences
Equine asthma (EA) is a highly relevant disease, estimated to affect up to 20% of all horses, and compares to human asthma. The pathogenesis of EA is most likely immune-mediated, yet incompletely understood. To study the immune response in the affected lower airways, mixed leukocytes were acquired through bronchoalveolar lavage (BAL) and the cell populations were analyzed on a single-cell basis by flow cytometry (FC). Samples of 38 horses grouped as respiratory healthy or affected by mild to moderate (mEA) or severe EA (sEA) according to their history, clinical signs, and BAL cytology were analyzed. Using FC, BAL cells and PBMC were comprehensively characterized by cell surface markers ex vivo. An increased percentage of DH24A+ polymorphonuclear cells, and decreased percentages of CD14+ macrophages were detected in BAL from horses with sEA compared to healthy horses or horses with mEA, while lymphocyte proportions were similar between all groups. Independently of EA, macrophages in BAL were CD14+CD16+, which contrasts the majority of CD14+CD16- classical monocytes in PBMC. Percentages of CD16-expressing BAL macrophages were reduced in BAL from horses with sEA compared to healthy horses. While PBMC lymphocytes predominantly contain CD4+ T cells, B cells and few CD8+ T cells, BAL lymphocytes comprised mainly CD8+ T cells, fewer CD4+ T cells and hardly any B cells. These lymphocyte subsets' distributions were similar between all groups. After PMA/ionomycin stimulation in vitro, lymphocyte activation (CD154 and T helper cell cytokine expression) was analyzed in BAL cells of 26 of the horses and group differences were observed (p=0.01-0.11). Compared to healthy horses' BAL, CD154+ lymphocytes from horses with mEA, and CD4+IL-17A+ lymphocytes from horses with sEA were increased in frequency. Activated CD4+ T helper cells were more frequent in asthmatics' (mEA, sEA) compared to healthy horses' PBMC lymphocytes. In summary, FC analysis of BAL cells identified increased polymorphonuclear cells frequencies in sEA as established, while macrophage percentages were mildly reduced, and lymphocyte populations remained unaffected by EA. Cytokine production differences of BAL lymphocytes from horses with sEA compared to healthy horses' cells point towards a functional difference, namely increased local type 3 responses in sEA
Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the
environment, causes cryptococcal meningitis (CM) mainly in immunocompromised
patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal
protein antigens targeted by the human humoral immune response. Therefore, we used
sera from Colombian CM patients, with or without HIV infection, and from healthy
individuals living in the same region. Serological analysis revealed increased titers of
anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients,
compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected
by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from
healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during
CM was supported by analysis of sera from C. neoformans-infected mice. Stronger
increase in IgG was found in wild type mice with high lung fungal burden compared to
IL-4Ra-deficient mice showing low lung fungal burden. To identify the proteins targeted by
human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome
approach identifying cryptococcal protein spots preferentially recognized by sera from CM
patients or healthy individuals followed by mass spectrometry analysis. Twenty-three
cryptococcal proteins were recombinantly expressed and confirmed to be
immunoreactive with human sera. Fourteen of them were newly described as
immunoreactive proteins. Twelve proteins were classified as disease-associated
antigens, based on significantly stronger immunoreactivity with sera from CM patients
compared to healthy individuals. The proteins identified in our screen significantly expand
the pool of cryptococcal proteins with potential for (i) development of novel anticryptococcal
agents based on implications in cryptococcal virulence or survival, or
(ii) development of an anti-cryptococcal vaccine, as several candidates lack homology
to human proteins and are localized extracellularly. Furthermore, this study defines preexisting
anti-cryptococcal immunoreactivity in healthy individuals at a molecular level,
identifying target antigens recognized by sera from healthy control persons
Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the environment, causes cryptococcal meningitis (CM) mainly in immunocompromised patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal protein antigens targeted by the human humoral immune response. Therefore, we used sera from Colombian CM patients, with or without HIV infection, and from healthy individuals living in the same region. Serological analysis revealed increased titers of anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients, compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during CM was supported by analysis of sera from C. neoformans-infected mice. Stronger increase in IgG was found in wild type mice with high lung fungal burden compared to IL-4Rα-deficient mice showing low lung fungal burden. To identify the proteins targeted by human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome approach identifying cryptococcal protein spots preferentially recognized by sera from CM patients or healthy individuals followed by mass spectrometry analysis. Twenty-three cryptococcal proteins were recombinantly expressed and confirmed to be immunoreactive with human sera. Fourteen of them were newly described as immunoreactive proteins. Twelve proteins were classified as disease-associated antigens, based on significantly stronger immunoreactivity with sera from CM patients compared to healthy individuals. The proteins identified in our screen significantly expand the pool of cryptococcal proteins with potential for (i) development of novel anti-cryptococcal agents based on implications in cryptococcal virulence or survival, or (ii) development of an anti-cryptococcal vaccine, as several candidates lack homology to human proteins and are localized extracellularly. Furthermore, this study defines pre-existing anti-cryptococcal immunoreactivity in healthy individuals at a molecular level, identifying target antigens recognized by sera from healthy control persons
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes. © 2018 The Author(s)
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes. © 2018 The Author(s)
Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the
environment, causes cryptococcal meningitis (CM) mainly in immunocompromised
patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal
protein antigens targeted by the human humoral immune response. Therefore, we used
sera from Colombian CM patients, with or without HIV infection, and from healthy
individuals living in the same region. Serological analysis revealed increased titers of
anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients,
compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected
by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from
healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during
CM was supported by analysis of sera from C. neoformans-infected mice. Stronger
increase in IgG was found in wild type mice with high lung fungal burden compared to
IL-4Ra-deficient mice showing low lung fungal burden. To identify the proteins targeted by
human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome
approach identifying cryptococcal protein spots preferentially recognized by sera from CM
patients or healthy individuals followed by mass spectrometry analysis. Twenty-three
cryptococcal proteins were recombinantly expressed and confirmed to be
immunoreactive with human sera. Fourteen of them were newly described as
immunoreactive proteins. Twelve proteins were classified as disease-associated
antigens, based on significantly stronger immunoreactivity with sera from CM patients
compared to healthy individuals. The proteins identified in our screen significantly expand
the pool of cryptococcal proteins with potential for (i) development of novel anticryptococcal
agents based on implications in cryptococcal virulence or survival, or
(ii) development of an anti-cryptococcal vaccine, as several candidates lack homology
to human proteins and are localized extracellularly. Furthermore, this study defines preexisting
anti-cryptococcal immunoreactivity in healthy individuals at a molecular level,
identifying target antigens recognized by sera from healthy control persons
Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the
environment, causes cryptococcal meningitis (CM) mainly in immunocompromised
patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal
protein antigens targeted by the human humoral immune response. Therefore, we used
sera from Colombian CM patients, with or without HIV infection, and from healthy
individuals living in the same region. Serological analysis revealed increased titers of
anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients,
compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected
by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from
healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during
CM was supported by analysis of sera from C. neoformans-infected mice. Stronger
increase in IgG was found in wild type mice with high lung fungal burden compared to
IL-4Ra-deficient mice showing low lung fungal burden. To identify the proteins targeted by
human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome
approach identifying cryptococcal protein spots preferentially recognized by sera from CM
patients or healthy individuals followed by mass spectrometry analysis. Twenty-three
cryptococcal proteins were recombinantly expressed and confirmed to be
immunoreactive with human sera. Fourteen of them were newly described as
immunoreactive proteins. Twelve proteins were classified as disease-associated
antigens, based on significantly stronger immunoreactivity with sera from CM patients
compared to healthy individuals. The proteins identified in our screen significantly expand
the pool of cryptococcal proteins with potential for (i) development of novel anticryptococcal
agents based on implications in cryptococcal virulence or survival, or
(ii) development of an anti-cryptococcal vaccine, as several candidates lack homology
to human proteins and are localized extracellularly. Furthermore, this study defines preexisting
anti-cryptococcal immunoreactivity in healthy individuals at a molecular level,
identifying target antigens recognized by sera from healthy control persons
Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain.
The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans