2,387 research outputs found

    In silico vaccine design for hepatitis C: A computational platform for fighting disease

    Get PDF
    Hepatitis C virus (HCV) infects 2-3% of the world's population. It is a major cause of liver morbidity and mortality and a scourge to global public health. Despite more than 20 years of research, only recently have effective treatments been developed and a vaccine remains elusive. The high cost of efficacious drug treatments severely limits their impact in the developing world, leaving prophylactic vaccination the best hope for global control. The high mutation rate of HCV coupled with its rapid replication rate enables it to rapidly escape host immune responses. In this thesis, I have employed tools from statistical physics, Bayesian inference, population dynamics, and high-performance computing to define empirical fitness landscapes and conduct viral dynamics simulations to determine vulnerable viral targets and rationally design vaccine immunogens. This computational design protocol will guide and accelerate vaccine development efforts by massively reducing the need for expensive and laborious trial-and-error experimentation. While this work has focused on HCV, the grander picture is that the tools I have developed will allow quick application of this methodology to other RNA viruses (some work has been done on HIV and influenza), magnifying the impact and implications of this work for global public health

    Modelling proteins’ hidden conformations to predict antibiotic resistance

    Get PDF
    AbstractTEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM’s specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models’ prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.</jats:p

    Retention of Actinides in Natural Pyrochlores and Zirconolites

    Get PDF
    Natural pyrochlore and zirconolite undergo a crystalline-aperi­odic transformation caused by alpha-decay of 232Th and 2380 at dose levels between 2 X 1014 and 3 X 1017 a/mg. The principal effects of the transformation are volume expansion and micro­fracturing, providing potential pathways for fluids. Geochemical alteration of the minerals may occur under hydrothermal conditions or in low temperature, near surface environments, but Th and U usually remain immobile and can be retained for time scales up to 109 years. However, the Th-U isotope systematics of a zirconolite-bearing vein and dolomite host rock may provide evidence for disequilibrium between 230Th, 234U and 238U

    Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory

    Get PDF
    Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL

    Positional Isomers of Isocyanoazulenes as Axial Ligands Coordinated to Ruthenium(II) Tetraphenylporphyrin : Fine-Tuning Redox and Optical Profiles

    Get PDF
    Two isomeric ruthenium(II)/5,10,15,20-tetraphe-nylporphyrin complexes featuring axially coordinated redox-active, low-optical gap 2- or 6-isocyanoazulene ligands have been isolated and characterized by NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopic methods, high-resolution mass spectrometry, and single-crystal X-ray crystallography. The UV-vis and MCD spectra support the presence of the low-energy, azulene-centered transitions in the Q band region of the porphyrin chromophore. The first coordination sphere in new L2RuTPP complexes reflects compressed tetragonal geometry. The redox properties of the new compounds were assessed by electrochemical and spectroelectrochemical means and correlated with the electronic structures predicted by density functional theory and CASSCF calculations. Both experimental and theoretical data are consistent with the first two reduction processes involving the axial azulenic ligands, whereas the oxidation profile (in the direction of increasing potential) is exerted by the ruthenium ion, the porphyrin core, and the axial azulenic moieties.Peer reviewe

    RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multi-electron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses

    Get PDF
    RMT is a program which solves the time-dependent Schrödinger equation for general, multielectron atoms, ions and molecules interacting with laser light. As such it can be used to model ionization (single-photon, multiphoton and strong-field), recollision (high-harmonic generation, strong-field rescattering) and, more generally, absorption or scattering processes with a full account of the multielectron correlation effects in a time-dependent manner. Calculations can be performed for targets interacting with ultrashort, intense laser pulses of long wavelength and arbitrary polarization. Calculations for atoms can optionally include the Breit–Pauli correction terms for the description of relativistic (in particular, spin–orbit) effects

    Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation

    Get PDF
    Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: −67% vs. −82%, Pi: 353% vs. 534%, pH: −0.22 vs. −0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (−3% and −36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (−15% and −33%), complex II (−36% and −23%), complex I + II (−31% and −20%), and state 3CI+CII control ratio (−24% and −39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response

    Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks

    Full text link
    Dramatic progress has been made over the last decade in the numerical study of quantum chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved actions), the development of new algorithms and the rapid increase in computing power available to lattice gauge theorists. In this article we describe simulations of full QCD using the improved staggered quark formalism, ``asqtad'' fermions. These simulations were carried out with two degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark. Several light quark masses, down to about 3 times the physical light quark mass, and six lattice spacings have been used. These enable controlled continuum and chiral extrapolations of many low energy QCD observables. We review the improved staggered formalism, emphasizing both advantages and drawbacks. In particular, we review the procedure for removing unwanted staggered species in the continuum limit. We then describe the asqtad lattice ensembles created by the MILC Collaboration. All MILC lattice ensembles are publicly available, and they have been used extensively by a number of lattice gauge theory groups. We review physics results obtained with them, and discuss the impact of these results on phenomenology. Topics include the heavy quark potential, spectrum of light hadrons, quark masses, decay constant of light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths and more. We conclude with a brief look at highly promising future prospects.Comment: 157 pages; prepared for Reviews of Modern Physics. v2: some rewriting throughout; references update

    Towards the glueball spectrum from unquenched lattice QCD

    Full text link
    We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 configurations at 0.092 fm with a pion mass of 360 MeV. We report masses for 10 glueball states. We discuss the prospects for unquenched lattice QCD calculations of the oddballs.Comment: 19 pages, 4 tables and 8 figures. One figure added. Now matches the published versio
    corecore