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Abstract

Hepatitis C virus (HCV) infects 2-3% of the world’s population. It is a major cause of liver

morbidity and mortality and a scourge to global public health. Despite more than 20 years

of research, only recently have effective treatments been developed and a vaccine remains

elusive. The high cost of efficacious drug treatments severely limits their impact in the

developing world, leaving prophylactic vaccination the best hope for global control. The high

mutation rate of HCV coupled with its rapid replication rate enables it to rapidly escape host

immune responses. In this thesis, I have employed tools from statistical physics, Bayesian

inference, population dynamics, and high-performance computing to define empirical fitness

landscapes and conduct viral dynamics simulations to determine vulnerable viral targets

and rationally design vaccine immunogens. This computational design protocol will guide

and accelerate vaccine development efforts by massively reducing the need for expensive and

laborious trial-and-error experimentation. While this work has focused on HCV, the grander

picture is that the tools I have developed will allow quick application of this methodology to

other RNA viruses (some work has been done on HIV and influenza), magnifying the impact

and implications of this work for global public health.
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Chapter 1

Introduction and Background

Viruses are one of the simplest biological agents on Earth. Viruses exist as small particles

tens to hundreds of nanometers in diameter, carry very little genetic material, and are

incapable of replicating themselves. They are commonly considered to live on the edge of

life. Yet they are more prevalent than any living organism on Earth, outnumbering cellular

organisms by at least an order of magnitude, occupy every ecological niche, and infect all

known forms of life [17–20]. Emerging with the oldest known life forms some viruses appear

to be very old, while others are less than a century old. For example, it is thought that human

immunodeficiency virus (HIV) evolved from a primate virus and moved to humans in the

1930s. Viruses infect the cells of other organisms and co-opt their replication machinery

to produce daughter virions that get released to infect other cells. Infection damages host

tissues by inducing pathological changes to the host cell, and ultimately cell death by lysis

or apoptosis (programmed cell death) [21].

Viral infections are responsible for many diseases and ailments from cold sores, the com-

mon cold, and influenza to HIV, several forms of hepatitis, and zika. There are medicines

that can be used to relieve the symptoms of viral diseases and a few antiviral drugs have

been developed in recent years for specific diseases, but the best way to deal with viruses

is prevention through vaccination. The protection against disease offered by vaccination is

a hallmark of modern medicine. Vaccination has lead to the eradication of smallpox [22],

which is estimated to have killed hundreds of millions of people in the 20th century alone

[23]. Vaccination has also lead to the eradication of rinderpest, a disease afflicting livestock

[24]. Other diseases are well on their way to eradication or are largely controlled. For exam-

ple, today polio only circulates in a handful of countries infecting tens of people each year
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while 40 years ago it afflicted hundreds of thousands each year [25].

The development of a vaccine usually takes 10 to 15 years of dedicated effort and costs

e1.7 billion ($2.0 billion) [26, 27], however many viruses such as HIV, hepatitis C virus

(HCV), and Ebola virus have no vaccine after several decades of research. There are many

obstacles that can arise in the development of a vaccine, but there is a commonality with

almost every virus currently evading vaccination efforts: rapid evolution [28]. DNA viruses

(e.g. Herpes simplex virus (HSV), Smallpox virus) have mutation rates ranging between

10−8 − 10−6 substitutions per nucleotide per replication while RNA viruses (e.g. HCV,

HIV) range between 10−6 − 10−4 [29]. Viruses also have rapid replication cycles. This high

virion production rate combined with the rapid mutation rate can result in large genetic

diversity of viral strains within an infected individual, enabling rapid escape from host

immune responses. In hepatitis C virus, for example, a high mutation rate of ∼ 1.2× 10−4

substitutions per nucleotide per replication conspires with a high virion production rate of

∼ 1012 viral progeny per day to produce all possible point mutations at all positions in the

9600-nucleotide genome every single day [29–31].

The goal of the research presented herein is to build a computational platform to accel-

erate the vaccine creation process. By taking advantage of increasingly abundant sequence

data we can construct empirical fitness landscapes. A fitness landscapes allows us to quan-

titatively evaluate the replicative fitness of different viral strains. This allows us to quickly

and cheaply compare vaccine candidates, systematically search for viral vulenerabilities, and

identify potential escape pathways from a given immune response.

In developing these tools I mainly used HCV as a test system. The reminder of this

chapter will cover some information on HCV. Then in chapter 2 we will dicuss more about

fitness landscapes and our model for them. In chapter 3 we will discuss using a fitness

landscape to design vaccines based on an unevolving population. In chapter 4 we will discuss

ways to use the fitness landscapes to explore alternative treatments. Then in chapter 5 we

refine our vaccine predictions with an evolving viral population.
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HCV infects 2% of the worlds population and 700,000 people die each year from HCV-

related liver diseases [32]. Prevalences in the US and European populations are around 1%,

but can reach 20% in parts of Northern Africa [33]. Chronic infection is responsible for

over a quarter of worldwide cases of cirrhosis and hepatocellular carcinoma [33] and is the

leading cause of liver transplantation in the developed world [34]. Despite many challenges

remarkable progress has been made in treating HCV [35, 36]. In the last 7 years success

rates of treatment has gone from ∼ 50% [37] to 90% [35]. However the impact of these new

treatments are severally limited by their cost [38–40]. Furthermore, recent concerns have

been raised about the safety of the new drugs [41]. Accordingly vaccination remains “the

most cost-effective and realistic method of controlling HCV globally” [42].

While more than two decades of research has not lead to a vaccine, there is a body

of evidence supporting the viability of a vaccine [43–46] and hope that a vaccine is within

reach. In 20-30% of cases, the host aborts HCV infection in the absence of treatment [47, 48].

Clinical studies have identified particular human leukocyte antigen (HLA) alleles, such as

HLA-B57, that are correlated with HCV control, and identified epitopes (i.e. parts of the

viral proteins attacked by the immune system) presented by these HLA molecules [4, 8].

It appears that these epitopes are particularly vulnerable to immune attack and cannot

easily escape by mutation [8, 12, 34, 48]. The first prophylactic HCV T-cell vaccine trial

is underway [48–50], which seeks to prime host T-cell responses – the cellular arm of the

adaptive immune system that seeks to identify and destroy infected cells – by delivering

complete NS3, NS4, and NS5 proteins. In analogy with recent findings in HIV [12, 51, 52],

there are concerns that by presenting whole proteins, potent responses against susceptible

viral targets may be drowned out by ineffective responses against poor targets, thereby

failing to confer protective immunity. Other HCV vaccines currently under development try

to address this issue [53–58]. Knowledge of which regions of the viral proteome are most

vulnerable to immune pressure can inform which regions of the HCV proteome should be

included in a vaccine immunogen to elicit only efficacious immune responses.
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Chapter 2

Fitness Landscapes

2.1 Introduction

Viruses are the most prevalent biological agents on Earth, occupying every ecological niche,

infecting all known forms of life, and outnumbering cellular organisms by at least an order

of magnitude [17–20]. Derived from the Latin word meaning “venom” [21, 60], viruses are

often considered organisms “on the edge of life” carrying hereditary genetic material and

subject to natural selection, but which are themselves unable to reproduce, instead reliant

on hijacking the replication machinery of an infected host [21, 61, 62]. Viruses exist as small

pathogenic particles tens to hundreds of nanometers in size known as virions [17]. A virion

comprises a single or double stranded RNA or DNA genome shrouded in a proteinaceous coat

known as a capsid, which itself may be encapsulated by a lipid bilayer envelope containing

additional proteins and/or carbohydrates [17, 62, 63]. Viruses are communicated by many

means, including air, water, sexual contact, and vectors such as mosquitos. Common viruses

infecting humans include influenza, hepatitis B virus (HBV), hepatitis C virus (HCV), human

immunodeficiency virus (HIV), and Zika virus. Upon entering the body, innate and adaptive

immune responses seek to destroy the virus and prevent an infection, which – depending on

the viral strain, health of the host, intensity of infection, and efficacy of treatment – can

induce symptoms ranging from mild discomfort, to organ failure, to death.

Upon infecting a susceptible cell, a virus releases its genetic material and proteins and

Most of this chapter is an excerpt from ref. [59]: G.R. Hart and A.L. Ferguson ”Viral fitness land-
scapes: A physical sciences perspective” in ”Systems Immunology: An introduction to modeling methods
for scientists” J. Das, C. Jayaprakash (eds.) Taylor and Francis (in press, 2017) [ISBN-10: 1498717403]
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co-opts the host replication machinery to produce daughter virions that are released to go

on and infect other cells. Infection damages host tissues by inducing pathological changes

to the host cell, and ultimately cell death by lysis or apoptosis (programmed cell death)

[21]. Some viruses, however, can remain dormant within infected cells for years, providing

a latent reservoir of infection [21]. Most viruses, RNA viruses in particular, are highly error

prone in copying their genetic material, introducing random mutations into the genome of

the daughter virions [62, 64]. Most mutations are deleterious to the virus by impairing the

activity of viral proteins, others are neutral having negligible impact on viral function, while

a small number may be beneficial by enabling the virus to escape from host immune pressure

or develop resistance to an antiviral drug. Mutation rates are a strong function of genome

size, and can vary between 10−8 − 10−6 substitutions per nucleotide per cell infection for

DNA viruses to 10−6− 10−4 for RNA viruses [29, 65]. Together with high virion production

rates, the genetic diversity of viral strains within an infected host can be exceedingly high,

enabling rapid escape from host immune responses. In hepatitis C virus, for example, a high

mutation rate of ∼ 1.2× 10−4 substitutions per nucleotide per cell infection conspires with

a high virion production rate of ∼ 1012 viral progeny per day to produce all possible point

mutations at all positions in the 9600-nucleotide genome every single day [29–31].

2.2 Sequence space and viral fitness landscapes

The genotype of each viral strain – the genetic sequence of its RNA or DNA genome –

together with its interaction with its environment, determines its phenotype – the charac-

teristics and performance of the virus [64]. The phenotype, in turn, dictates the viral fitness

[64, 66–68]. The definition of fitness can be somewhat slippery [66, 69, 70]. For viral repli-

cation within an infected host the replicative fitness is the appropriate measure, and has

been succinctly defined as “the capacity of a virus to produce infectious progeny in a given

environment” [66, 68]. (This should be distinguished from transmission fitness describing the
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capacity of a viral strain to jump between hosts, and the epidemiological fitness defining the

capacity of a particular viral strain to come to dominate within a particular host population

[66].) The replicative fitness is a positive real number that can be empirically measured in

vitro or in vivo [66, 70–73].

For a viral genome of length M nucleotides, each position can be occupied by one of

four nucleobases, leading to 4M possible distinct viral strains. Alternatively, for a N-residue

proteome in which each position can be occupied by one of 20 naturally occurring amino

acids, there are 20N distinct sequences. For hepatitis C virus, M ≈ 9600 and N ≈ 3000,

such that there are more than 105700 distinct viral genomes and 103900 distinct proteomes

[31]. For comparison, there are “only” around 1080 protons in the universe [1, 62, 74]. The

size of the known universe may be astronomically big, but the sequence space accessible to

the virus is “genomically” large [75]!

Mathematically, the ensemble of viral genomes or proteomes define a set S. Distances

between sequences are naturally measured by the Hamming distance, dH , quantifying the

number of point mutations by which a pair of sequences differ. The set S and distance dH

together define a M-dimensional metric space (S,dH) known as sequence space [62, 64, 65, 76].

The sequence space can be conceived as a M-dimensional hypercube with genome sequences

residing on the vertices and edges connecting nearest neighbors differing by a single point

mutation [64, 65]. This space is high-dimensional, highly-connected, and dense [62] (figure

2.1)

Superposing the (replicative) fitness of each strain onto the sequence space defines a

(M+1)-dimensional fitness landscape [62, 64, 76, 77]. First posited by Sewall Wright in the

1930s [1] and refined by J. Maynard Smith [78], Manfred Eigen, and Peter Schuster [79, 80]

in the 1970s, the fitness landscape is a cornerstone of population genetics coupling the key

concepts of sequence space and differential fitness. In essence, the fitness landscape can

be considered the “playing field” over which the virus is constrained to evolve, defining a

quantitative map describing how its fitness changes as point mutations arise by the error
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Figure 2.1: Illustrative fitness landscape for a hypothetical M = 4 position virus, each of
which can take on z = 2 values {0,1}. The K = zM = 24 = 16 distinct viral genomes
comprising the sequence space S define the nodes of a 4-dimensional hypercube (tesseract)
with edges linking genomes differing by a single point mutation (Hamming distance, dH =
1). Superposing the fitness of each mutant over the sequence space defines the (M + 1)-
dimensional fitness landscape represented here as a heat map. Although low-dimensional
pictures provide ”a very inadequate representation of such a field” [1], the mathematical
concept indicated by this schematic straightforwardly generalizes to arbitrary M and z.

prone replication machinery. Replicatively fit strains that rapidly produce progeny reside

at the peaks of the fitness landscape, whereas unfit strains containing mutations that im-
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pair protein function reside in low-fitness valleys [12, 81]. Viral evolution is the process of

mutational motion over the fitness landscape under applied selective pressure [78].

2.3 Quasispecies theory

For rapidly mutating viruses, the picture of viral evolution as a hill-climbing process in

which the virus seeks to maximize fitness is not quite correct [69, 77]. Due to the high

rate at which mutations are introduced during viral replication, a viral strain residing in

sequence space at a particular vertex of the M-dimensional hypercube does not generate

identical copies of itself but produces daughter progeny that “leak” along the edges of the

hypercube into neighboring mutational states. Recognizing the importance of this effect

upon natural selection, Manfred Eigen and Peter Schuster proposed that the unit of natural

selection was not a particular viral strain, but a swarm of closely related mutant strains in

sequence space known as a quasispecies arising from a balance of mutation and selection

[79, 80]. The deterministic evolution of the quasispecies over the fitness landscape in the

infinite population size limit is specified by a first order nonlinear differential equation known

as Eigen’s equation, or the quasispecies equation [2, 62, 64, 79, 80, 82, 83],

ṅi =
K∑
j=1

njfjqij − φ({nk})ni, (2.1)

where there are K distinct genomes i = 1 . . . K, ni is the fraction of the population with

genome i and the population fractions are normalized such that
K∑
i=1

ni = 1, ṅi is the rate

of change of strain i, fi is the relative replicative fitness of strain i, qij is the mutational

probability that replication of strain j produces strain i under replication and are normalized

such that
K∑
i=1

qij = 1, and φ({nk}) =
K∑
i=1

nifi is the average fitness of the population defining

the fitness-independent removal rate of each strain to keep the total population size fixed.

This equation may be succinctly expressed in matrix-vector form as [2],
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~̇n = QF~n− (~n · ~f)~n, (2.2)

where ~n = [n1, n2 . . . , nk]
T is a column vector specifying the instantaneous structure of the

viral population, ~̇n is the rate of change of the population structure, Q = [qij] is the left

stochastic mutation matrix, f = [f1, f2 . . . , fk]
T , and F = diag(f) is the diagonal fitness

matrix. The nonlinear quasispecies equation can be transformed into a linear differential

equation and solved exactly using a path integral formulation [84, 85]. In the limit of perfect

replication fidelity (i.e. a diagonal mutation matrix), the quasispecies equation reduces to

the standard replicator equation [64].

The quasispecies equation is central to the study of viral dynamics, and makes a number

of important predictions (figure 2.2). First, it asserts that for rapidly mutating viruses,

natural selection acts on the level of the quasispecies rather than the individual strain [65,

79, 80]. Second, it predicts that while at low mutation rates the equilibrium quasispecies

will be centered on the global fitness maximum, at sufficiently high mutation rates it may

sacrifice a narrow high peak in favor of a broad lower peak [62, 64, 79, 80]. This result can

be understood as natural selection on the level of the quasispecies, which seeks to maximize

the mean fitness of the swarm of closely related strains. A virus with a low-error rate can

exist as a tight cloud of member strains within a narrow high fitness peak, resulting in a

high mean fitness of the population. A high-error rate virus exists as a diffuse cloud of

strains due to mutational “leakage” along the edges of the sequence space hypercube. In the

region of a high narrow peak, many members of the high-error rate ensemble will exist in

low fitness states outside the peak, pulling down the mean fitness of the population. In the

region of a lower but broader peak, more members of the quasispecies occupy high fitness

states, leading to a net elevation of the mean fitness. This phenomenon has been termed

“survival of the flattest” [86, 87]. Third, it predicts the existence of a maximum error rate

beyond which the quasispecies loses cohesion and cannot adapt to the fitness landscape
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[62, 64, 82, 88–91]. This error catastrophe can be shown to be analogous to a first order

phase transition in a finite system [92], corresponding to a loss of locality of the quasispecies

within sequence space [93–97]. We further discuss this in chapter 4 where we show that some

proteins exist on the edge of this phase transition and inducing the error catastrophe offers

alternative treatment options. Evidence suggests that many RNA viruses possess mutation

rates close to the error threshold, which is thought to provide a survival advantages to the

virus by offering a reservoir of viral phenotypes, enhancing adaptability, and aiding in the

development of immunological escape mutations [62, 90, 98, 99]. Drug therapies that elevate

the viral mutation rate above the error threshold are under investigation as novel treatments

for HIV [100–103].

Despite the central importance of quasispecies theory in the theoretical understanding of

viral evolution, it has not enjoyed strong experimental support largely due to the technical

difficulties associated with sequencing a substantial fraction of the strains constituting the

quasispecies [83]. Nevertheless, support exists for the existence of the error catastrophe [104],

and recent advances in deep sequencing and ultra deep sequencing are expected to enable

more rigorous testing of its predictions [83]. One significant deficiency of the theory is

that it is inherently deterministic, therefore pertaining to formally infinite viral populations.

Viruses can have relatively small effective population sizes, such that stochastic effects can

play an important role in their evolutionary dynamics [82, 97]. Numerical population genetics

simulations provide a means to explicitly account for stochasticity, and also straightforwardly

incorporate other effects such as co-infection, recombination, spatial heterogeneity, and drug

or immune pressure [82, 97, 105–108]. Finally, we note the ingenious observation by Guy

Sella and Aaron Hirsh of an isomorphism – under relatively restrictive conditions – between

population genetics and equilibrium statistical thermodynamics [109]. Similar analogies

to statistical mechanics and information theory have been made by Michael Deem, Arup

Chakraborty, Bill Bialek, Hendrik Richter, and ourselves [12, 76, 81, 96, 106, 110–115].

A prerequisite to simulating viral dynamics using either quasispecies theory or numerical
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Figure 2.2: Equilibrium quasispecies distribution over the sequence space n4 as a function of
mutation rate. Continuing the example of a M = 4 position virus with z = 2 values {0,1} per
position, we can simulate its quasispecies dynamics over its K = 16 state fitness landscape in
figure 2.1. The fitness landscape is specified by the (relative) fitness vector f =[0.7, 0.1, 0.9,
0.7, 0.5, 0.1, 0.7, 0.6, 0.5, 0.1, 0.7, 0.6, 0.5, 0.1, 0.6, 0.6] with elements arranged in standard
order (i.e., 1 = 0000, 2 = 0001, . . . , 15 = 1110, 16 = 1111). The mutation matrix is specified
as Q = qij, where qij = pHij(1− p)(M−Hij) (eqn. 2.3), Hij is the Hamming distance between
strains i and j, and p is the mutation rate per position per replication cycle. We solve for
the equilibrium quasispecies distribution over the sequence space by solving for the steady
state solution of the quasispecies equation (eqn. 2.2) as a function of mutation rate [2]. In
the left panel we reproduce the fitness landscape illustrated in figure 2.1 superposed with pie
segments indicating the equilibrium fraction of the quasispecies population partitioning into
each mutational state at a low mutation rate of p = 0.02. Under these conditions, the virus
possesses relatively high copying fidelity and the quasispecies localizes around the fitness
peak at state [0010], with a small fraction of the population leaking into the neighboring
strains. In the right panel we illustrate the equilibrium distribution at an elevated mutation
rate of p = 0.4, where the quasispecies has experienced an error catastrophe such that it
cannot adapt to the topography of the fitness landscape and has delocalized across sequence
space.

simulations is specification of the fitness landscape f and the mutation matrix Q. The

mutation matrix is typically assumed to be non-negative, symmetric, and stochastic [2].

Assuming independent identically distributed (iid) mutations, the mutation matrix Q = [qij]
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can be straightforwardly specified as [2, 62],

qij =

(
p

z − 1

)Hij
(1− p)(M−Hij), (2.3)

where qij is the mutational probability that replication of strain j produces strain i, p is

the mutation rate per position per replication cycle, z is the size of the alphabet at each

position (z = 4 for genomes, z = 20 for proteomes), M is the number of positions in the

strain, and Hij is the Hamming distance (i.e., number of substitutions) between strains

i and j. For p = 0, the Q matrix becomes the identity matrix corresponding to perfect

replication fidelity. For sufficiently small values of p, daughter strains containing two or

more mutations within the same replication cycle (Hij ≥ 2) may be considered vanishingly

rare. Accordingly, Q may be approximated as qij = (1 − p)M , qij =
(

p
1−p

)
(1 − p)(M−1) for

Hij = 1, and qij = 0 for Hij ≥ 2, corresponding to a situation in which the progeny of

any viral strain can contain at most one point mutation and multi-mutant hops along the

edges of the sequence space hypercube are forbidden. More complex models may allow, for

example, for differential probabilities in mutating from a purine to a pyrimidine nucleobase

on the level of the genome, or accounting for synonymous and non-synonymous mutations

in the three-base amino acid codon on the level of the proteome. Specification of the fitness

landscape defined by the fitness vector f is a more involved problem that is the subject of

the following section.

2.4 Viral fitness landscapes from experiment and

theory

The genotype of a viral strain within a particular environment specifies its phenotype that,

in turn, dictates its replicative fitness. The fitness landscape is the convolution of this

double mapping from genotype to phenotype to fitness [64, 74, 76, 77]. This mapping
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can be conceived as a (complicated) function of the viral sequence, which integrates over

the characteristics and performance of the virus within its environment to produce a non-

negative real number specifying its replicative competency. Fitness landscapes have typically

been defined by one of two methods: sparse experimental fitness measurements of very

limited regions of sequence space, or theoretical models designed to reproduce the statistical

properties of real landscapes [116, 117]. The former pertain to one particular viral system

and therefore can be used to make fitness predictions, but have proven difficult to both

define and to generalize. The latter are designed to be statistical abstractions that are

generic to some class of viruses, but necessarily sacrifice predictive accuracy of the fitness of

any particular virus.

Experimental determination of comprehensive fitness landscapes is rendered extremely

challenging by the vast size of viral sequence space. For a viral proteome comprising N amino

acids there are 20N distinct viral sequences, meaning that experimental measurements of the

replicative capacity can only probe a vanishingly small fraction of the sequence space [74].

Taking hepatitis C virus as an example, N ≈ 3000 meaning that there are 103900 distinct

proteomes [31]. Fewer than around 1 in 103897 strains would have to be represented in

meaningful quantities during infection to define a sequence space sufficiently small to be

comprehensively probed by experimental fitness assays. Nevertheless, advances in next-

generation sequencing and high-throughput automated assays has led to a growing body of

experimental studies designed to probe general features of fitness landscapes by measuring

the fitness of a limited subset of tens to hundreds of mutant strains [74, 77, 116, 118–120].

For example, Qi et al. coupled saturation mutagenesis with deep sequencing to measure the

fitness of all 1720 possible point mutants within an 86-residue region of the hepatitis C virus

protein NS5A known to be a target for replication inhibitors [121]. Nonetheless, experimental

determination of comprehensive fitness landscapes remains inherently intractable for even

the smallest viruses, offering only a “glimpse. . . within the immense genotype space” [74].

A more scalable approach is offered by using limited experimental data to fit statistical

13



or regression fitness models that may then be extrapolated to predict the fitness of strains

that were not directly assayed [74, 77, 119, 120, 122–125]. For example, Hayashi et al. com-

bined molecular evolution experiments with infectivity assays to fit the parameters of an

NK−model [123]. Hinkley et al. fitted a regularized regression model to in vitro fitness

measurements of 70,081 mutant strains of HIV incorporating pairwise interactions that was

capable of explaining 54.8% of the variance in the measured fitness [120]. Segal et al. em-

ployed decision tree-based approaches to predict HIV-1 replicative capacity as a function of

the amino acid sequence of the protease and reverse transcriptase viral proteins [124]. In all

cases, however, the time, labor, and expense associated with in vitro fitness measurements

means that models are fit to a sparse library of fitness measurements sampling an infinitesi-

mally small fraction of sequence space. The fitted models are therefore subject to significant

bias and possess large extrapolation errors for mutant strains dissimilar to those upon which

the model was trained [122].

A number of theoretical fitness landscape models have been proposed that seek to re-

produce the statistical features and correlations observed in real landscapes. These models

have proved extremely useful in gaining insight into viral dynamics and adaptation over

archetypal landscapes, and as baseline models containing parameters that may be tuned

to experiment. Epistasis – nonlinear effects due to interaction of two or more mutational

loci – gives rise to non-additive fitness landscapes, and appears to play a critical role in the

function, dynamics, and evolution of viruses [4, 12, 51, 74, 83, 96, 126]. One of the first and

most popular fitness models explicitly designed to capture epistasis is Kaufmann’s “tuneably

rugged” (i.e., “tuneably epistatic”) NK−model [76, 117, 123, 127–129]. This model specifies

fitness as the sum of random variables corresponding to the fitness contributions from N

positions, each of which depends on the mutational state of K other positions. In the limit

K = 0, there is no epistasis (i.e., all positions have independent fitness contributions) and

the landscape is unfrustrated and smooth, the so-called “Mount Fiji” model [74]. The limit

of K = (N − 1) corresponds to all-to-all epistasis, producing a highly rugged and frustrated
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landscape containing many local fitness maxima known as a “house of cards” model that is

isomorphic to a random energy spin glass [74, 130, 131]. Generalizations of the NK−model

accounting for protein structure and binding interactions have subsequently been proposed

[62, 86]. The “rough Mount Fiji” model superposes onto the NK−model a fitness contri-

bution that falls off with Hamming distance away from a reference (usually the wild-type)

strain [74, 82, 132]. An alternative model is provided by Motoo Kimura’s neutral theory of

evolution, which envisages mutations to be either neutral or lethal [133]. The corresponding

fitness landscape is binary, containing viable strains of equal fitness residing on a neutral

plateau fissured by valleys of unviable mutant strains [132]. Since the unviable strains are

considered to be mutationally inaccessible (i.e., have zero fitness), this has been described

as a “holey” fitness landscape that is isomorphic to a percolation problem over the sequence

space hypercube [76, 132].

2.5 Data-driven viral fitness landscapes

Very recently, data-driven approaches have emerged as a third way to determine empiri-

cal fitness landscapes from databases of viral sequences [2, 12, 81, 111, 134, 135]. These

approaches adopt a Bayesian perspective to determine fitness landscapes consistent with

observations of viral strains sequenced from infected hosts by assuming a relationship be-

tween strain fitness and the relative prevalence of correlated mutational patterns within the

sequence database [122]. Although the predictions of such models may be validated against

in vitro fitness assays, these techniques are distinguished from the fitting of fitness models to

experimental measurements in that they require only a library of observed viral sequences

and do not appeal to experimental fitness measurements for their construction. This is

a critical distinction, since modern low-cost, high-throughput sequencing technologies has

made these approaches massively more scalable than those predicated on laborious and time

consuming fitness assays [83, 136].
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In 2013, Ferguson et al. pioneered a data-driven approach to reconstruct viral fitness

landscapes from viral sequence databases [12]. Subsequent works by ourselves and others

have produced sophistications, analyses, and validations of the approach, and applications

to both hepatitis C virus and HIV [81, 96, 106, 111, 112]. The essence of the approach

is to regard the viral strains within a sequence database as observations over an unknown

fitness landscape, and perform Bayesian inference to solve the “inverse problem” and recon-

struct the most probable fitness landscape from which the strains were drawn. Provided

that founder effects are weak such that the virus rapidly anneals to the immune response of

a newly infected host, and that the sequence databases of observed viral strains are suffi-

ciently large and represent hosts with diverse immunological genotypes, it has been demon-

strated by both theory and empiricism that the fitness landscapes we compute quantify the

intrinsic molecular fitness of the virus uncorrupted by “footprints” of adaptive immunity

[12, 81, 106, 111, 137]. In effect, the diversity of possible immune responses means that

particular positions within the viral genome are subject to mutational pressure from a small

subset of the hosts constituting the database and particular immune responses act as a small

perturbation when averaged over sufficiently many hosts [106]. The fitness landscapes de-

termined by our approach – which we detail below in section 2.5.2, and then describe its

applications to HIV and HCV vaccine design in chapters 3, 4, and 5 – reflect the intrinsic

replicative capacity of the virus in the absence of immune pressure, and can be straight-

forwardly adapted to reflect the effective fitness landscape experienced by the virus in any

particular host by superposing the adaptive immune responses as an external perturbation

[12, 81, 106].

2.5.1 Relationship to other work

In 2015, Niko Beerenwinkel and co-workers proposed an elegant framework to estimate in-

trahost fitness landscapes from next generation sequencing data of the viral quasispecies

within an infected host [2, 83, 136]. This approach shares similarities with our own in that it
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employs a Bayesian inference approach to reconstruct fitness landscapes from observations

of viral strains, but has some important distinguishing differences. First, the approach is

based on intrahost sequencing data and therefore calculates fitness landscapes that are the

convolution of the intrinsic fitness (i.e., in the absence of immune pressure) with the adap-

tive immune responses of the particular host. The authors used their approach to recover

the fitness landscape for HIV protein p7 in two hosts, and found the landscapes to be quite

different in each case. Containing the “footprints” of host immune pressure [137], it is a

challenge to generalize these fitness landscape to new environments (e.g., different immune

responses, drug pressure, in vitro culture). Second, the approach postulates that the ensem-

ble of strains should follow the equilibrium distribution predicted by quasispecies theory to

provide a model linking strain fitness to prevalence in the sequencing data. Due to the im-

mense size of sequence space, it is necessary to operate in a reduced subset of sequence space

in which low fitness viral strains are neglected [2]. Moreover, the fitness landscape f and

mutation matrix Q are not independently identifiable (eqn. 2.2) [2, 138], meaning that the

inference problem requires the specification of a particular Q upon which the inferred f then

depends. In contrast, our approach is non-parametric in the sense that it does not appeal

to quasispecies theory nor assume an a priori functional form for the fitness landscape, in-

stead seeking the least biased (i.e., maximum entropy) model consistent with the data. The

authors devise a Monte Carlo approach to perform the Bayesian inference, and have made

this available for free public download at http://www.cbg.ethz.ch/software/quasifit.

We also observe the relationship of our approach to earlier work by Beerenwinkel et al. in

2005 and Deforche et al. in 2008 that coupled cross-sectional sequence data (i.e., sequence

data from different infected hosts at different times) from treated and untreated cohorts

of HIV patients with in vivo evolutionary models to estimate the effect of drug therapy

upon viral fitness and mutation [134, 135]. The more recent work by Beerenwinkel and

ourselves seeks not differential fitness responses to drug therapy, but rather the complete

fitness landscape either in the presence [2] or absence [12] of host immune pressure.
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Our methodology also shares commonalities with innovative work by Bill Bialek and

co-workers who employed data-driven spin glass models to quantify antibody diversity in ze-

brafish, the activity of ensembles of neurons in salamander retinae, and the flocking behavior

of birds [113, 115, 139–142], and Martin Weigt, Terry Hwa, José Onuchic and co-workers who

used data-driven spin glass models to identify coevolving amino acid residues or nucleotides

to predict putative protein and RNA tertiary structure contacts [143–147].

2.5.2 Mathematical and computational details

Given a multiple sequence alignment (MSA) of viral sequences drawn from multiple infected

hosts, we have developed an approach to determine the least biased model capable of re-

producing the relative prevalence of viral strains within the database [12, 81, 106, 111].

We choose to work with viral proteomes, but the approach is equally applicable for viral

genomes. Since the viral strains are drawn from amongst the population of infected hosts

and not from within a single host, we assume that the viral prevalence landscape on the

level of the infected population is a good proxy for the fitness landscape on the level of a

single host. We also make the simplifying assumption that the sequences within the database

are independent and identically distributed (iid). It has been demonstrated by both ana-

lytical theory and experimental comparisons that both of these assumptions are valid for

sufficiently large and diverse clinical sequence databases containing strains that are phylo-

genetically proximate (e.g., belong to the same viral subtype) [12, 81, 106, 111]. We seek

the maximum entropy model consistent with the two lowest moments of the amino acid

distribution [148, 149], namely the frequency with which the 20 amino acids are observed at

each single position and each of the 20× 20 = 400 pairs of amino acids are observed in each

pair of positions. The resulting model is the simplest non-trivial fitness landscape capable

of capturing epistasis at the level of pairs. A natural extension would be to include higher

order epistatic effects (e.g., triplets, quads, etc.). It has been shown, however, that the

exponential explosion in the model parameters associated with higher order terms quickly
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degrades both the numerical stability and predictive performance of the model [120]. By ter-

minating the expansion at second order, we determine not the intrinsic one- and two-body

coefficients, but effective coefficients that implicitly capture higher-order correlations and

which we have shown to reproduce both the three- and four-body amino acid frequencies

[12, 81]. This is consistent with observations that effective pairwise interaction models can

reproduce higher order correlations from the emergent interactions of the constitutive pairs

[115, 122, 140, 141].

The maximum entropy model that emerges from this analysis is the infinite-range Potts

spin glass from statistical physics [81, 111, 150]. Given an N -residue viral proteome in which

each position can be occupied by one of 20 naturally occurring amino acids, ~A = {Ai}Ni=1,

where Ai specifies the identity of the amino acid residue in position i, the Potts model

specifies the probability of observing that sequence as [81, 111],

P ( ~A) =
1

Z
e−E( ~A), E( ~A) =

N∑
i=1

hi(Ai) +
N∑
i=1

N∑
j=i+1

Jij(Ai, Aj), (2.4)

where E is a fictitious dimensionless “energy”, E( ~A) is the spin glass Hamiltonian specifying

the mapping from sequence to energy, and the normalizing factor Z is the partition function.

The Hamiltonian comprises N 20-element vectors {hi} specifying the contribution of each

amino acid in each single position to the sequence energy, and N(N − 1)/2 20× 20 matrices

{Jij} specifying the contributions of each pair of amino acids in each pair of positions. Since

we fit our model against population level sequence databases, P ( ~A) should be interpreted as

the probability of observing a particular strain within the ensemble of infected hosts. We,

and others, have demonstrated using analytical theory [106, 109], computer simulations [106],

and comparisons against in vitro and in vivo data [12, 81, 111] that the prevalence of a strain

at the population level P ( ~A) is a good proxy for intrinsic viral replicative capacity within an

infected host f( ~A). The Potts Hamiltonian therefore defines the (relative) replicative fitness

landscape f of the virus as f( ~A) ∝ e−E( ~A). If required, the constant of proportionality can
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be determined by fitting against experimental fitness measurements for a small number of

mutant strains [81, 111].

The model parameters {hi, Jij} are fitted such that eqn. 2.4 reproduces the one- and two-

body amino acid frequencies observed in the MSA, and may be computed in many ways,

including mean field and post-mean field approximations [144, 151–155], message passing

[143], adaptive cluster expansions [111, 156], pseudo-likelihood maximization [157], minimum

probability flow [158], and Monte Carlo sampling [139, 159]. We have developed an approach

employing iterative gradient descent and Monte Carlo evaluation of model probabilities that

provides highly accurate parameter fits. We accelerate convergence using a combination of

Bayesian regularization, initial mean field parameter estimates, and parallel Monte Carlo

chains exploiting CPU or GPU multicore architectures. The full mathematical details of

this method are reproduced in appendix A, and an open-source C++ code implementing

our approach is available for free public download as detailed in appendix B (also see ref.

[12, 111]).

In the most general form of eqn. 2.4, each hi is a 21-element vector – 20 amino acids

plus an unknown/blank amino acid – and each Jij is a 21-by-21 matrix. In practice we

restrict zi to the subset of amino acids actually observed in the MSA, truncating the hi

vectors and Jij matrices and reducing the number of model parameters, thus accelerating

model convergence. The penalty for this simplification is that the fitted model is not capable

of making fitness predictions for viral strains containing amino acids not observed within

the MSA. For an MSA comprising sufficiently many sequences, we expect broad coverage

of the mutationally accessible space of viable viral strains, and the observation of a strain

containing an unobserved amino acid to be a rare event. As discussed in ref. [111] and

section C.2, we can straightforwardly incorporate parameters for unobserved amino acids

using pseudo-counts to set a lower bound on their expected frequency and over come this

drawback as needed.
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2.6 Applications

To illustrate our approach, we here demonstrate its application to a cartoon two-residue

virus as the simplest possible model system capable of exhibiting epistatic couplings between

residues. In the following chapters we show its application to determine the fitness landscape

of the hepatitis C virus RNA-dependent RNA polymerase (protein NS5B) and show how this

landscape may be used for in silico design of vaccine immunogens (see chapters 3 and 5). We

have also employed our approach to determine fitness landscapes for multiple proteins of both

hepatitis C virus and HIV, perform in silico design cytotoxic T-cell vaccine immunogens,

and make the first theoretical prediction of a viral error catastrophe in an empirically-defined

viral fitness landscape for the p6 HIV protein [12, 81, 96, 106, 111] (also chapter 4).

2.6.1 A toy model of a two-residue virus

We first consider a toy virus comprising precisely two amino acid residues. This is the

simplest possible system capable of exhibiting epistasis and possesses the appealing property

that the fitness landscape can be easily visualized in three dimensions. We specify the fitness

landscape of this virus by fiat, and demonstrate the capacity of our approach to correctly

infer the fitness landscape from sufficiently many observations of viral strains over the a

priori unknown fitness landscape.

Identifying the particular amino acid residue in position i = {1, 2} by an index Ai =

{1, 2, . . . , 20} arbitrarily ordering the 20 natural amino acids, we adopt as the “true” fitness

landscape for the cartoon virus the Potts spin glass (eqn. 2.4) with parameters specified as,

h1(A1) =
A1 − 1

4
, h2(A2) =

A2 − 1

8
, J12(A1, A2) = 1.5(e−((A1−4)2+(A2−4)2)−e−((A1−8)2+(A2−9)2)).

(2.5)

This fitness landscape was designed to possess a simple but non-trivial topography, pos-
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sessing a global maximum at the sequence [1,1], a global minimum at [20,20], a local max-

imum at [9,8], and a local minimum at [4,4] (figure 2.3). Since the form of the true fitness

landscape and that inferred by our inference technique have the form of a Potts spin glass,

our approach should be capable of accurately reproducing the one- and two-body amino

acid frequencies and predicting strain fitness given sufficiently many observations of viral

sequences over the landscape.

Figure 2.3: Fitness landscape of a cartoon viral protein possessing two amino acid residues
specified by eqn. 2.5. We index the amino acid residues available to position i as Ai =
{1, 2, . . . , 20}, but their ordering is arbitrary. A particular sequence [Ai, Aj] can mutate into
any other sequence in the same column by making a point mutation in the first residue,
and to any other sequence in the same row by making a point mutation in the second. The
fitness landscape was designed to possess a global maximum at the sequence [1,1], a global
minimum at [20,20], a local maximum at [9,8], and a local minimum at [4,4].

To test this hypothesis, we generated realizations of viral strains sampled over the land-
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MSA size ρP1 (p value) ρP2 (p value) RMSE {hi} RMSE {Jij}
100 0.47 (2.2× 10−3) 0.22 (1.2× 10−5) 14.7 19.6
101 0.52 (6.7× 10−4) 0.25 (1.2× 10−7) 17.2 40.9
102 0.72 (1.7× 10−7) 0.37 (3.3× 10−14) 23.1 93.5
103 0.93 (1.9× 10−18) 0.81 (8.0× 10−96) 14.7 81.3
104 0.99 (1.1× 10−36) 0.97 (1.1× 10−238) 2.6 48.5
105 1.00 (3.1× 10−44) 1.00 (< 1.0× 10−308) 0.7 5.5

Table 2.1: Quality of fitness landscape reconstruction for a cartoon 2-residue virus with
a Potts spin glass fitness landscape with parameters specified by eqn. 2.5 for multiple
sequence alignments containing various numbers of sequences. We report the Pearson cor-
relation coefficient of the analytically computed one-body (ρP1) and two-body (ρP2) amino
acid frequencies between the true and fitted fitness landscape. We also report the root mean
squared error in the inferred {hi} and {Jij} parameters relative to their true values.

scape in proportion to their fitness using Markov chain Monte Carlo sampling [81]. We

assembled strains generated in this manner into multiple sequence alignments containing

different numbers of sequences, then used these alignments and our iterative gradient de-

scent approach to infer the 40 {hi} and 400 {Jij} parameters from the data [81, 111]. We

report in table 2.1 a quantitative assessment of the capacity of our inferred model to repro-

duce the one- and two-body amino acid frequencies observed in the MSA, and the agreement

of the inferred model parameters with those of the true landscape. Containing just two mu-

tating residues, the one- and two-body mutational frequencies of the true and fitted models

can be computed analytically by enumerating over all viral mutants. We present in figure

2.4 parity plots of the true and predicted fitness computed for all possible viral strains.

As anticipated, we find that the fitted model can reproduce the one- and two-body

mutational frequencies and predict strain fitness to arbitrarily high fidelity given sufficiently

many sequences in the MSA. The agreement between the inferred and true model parameters

also improves with the number of sequences in the MSA, but remains non-zero even for near-

perfect reproduction of the one- and two-body mutational frequencies. This phenomenon

appears to result from the existence of “null spaces” or “sloppy directions” within the {hi, Jij}

parameter space such that particular combinations of the parameters can be adjusted in

concert without significantly perturbing the energy (i.e., fitness) of a strain or its one- and
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Figure 2.4: Parity plots of true versus reconstructed fitness for the cartoon M = 2 residue
viral protein possessing the fitness landscape illustrated in figure 2.3. The plots illustrate for
the ensemble all 20M = 400 viral strains the true strain fitness specified by eqn. 2.5 against
the fitness predicted by models reconstructed from multiple sequence alignments containing
(a) 103, (b) 104, and (c) 105 viral strains.

two-body mutational probabilities [160]. This simple toy problem indicates that it is possible

to reconstruct fitness landscapes to high precision given sufficiently many sequences, but that

care should be taken in assigning meaning to individual hi and Jij values.
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Chapter 3

Using Fitness Landscapes in Static
Design

3.1 Introduction

In this chapter we detail our development of empirical fitness landscapes for hepatitis C

virus (HCV), their validation against experimental and clinical data, and their use in high-

throughput screening and computational vaccine design.

Specifically we have inferred the fitness landscape for the RNA-dependent RNA poly-

merase – nonstructural protein 5B (NS5B) – within HCV that is known to be an important

target for natural and therapeutic control [37, 161, 162]. We consider HCV genotype 1a,

the most prevalent infecting genotype in the United States, which is responsible for 35-50%

of infections domestically [163–165] and ∼60% worldwide [166]. As described below, we

validate our fitness landscape in comparisons with experimental measurements and clinical

data, and combine our models with population level immunological data to design cytotoxic

T lymphocyte (CTL) immunogens predicted to have high efficacy and broad coverage in the

United States population. By exhaustively screening the 16.8 million possible T-cell vaccine

immunogens targeting epitopes in NS5B, we have identified 86 optimal formulations that we

propose for experimental testing. By reducing the search space of immunogen candidates

by over five orders of magnitude, our approach can massively reduce the time, expense, and

labor of experimental vaccine development, guiding and accelerating the search for a HCV

vaccine.

Most of this chapter is an excerpt from ref. [81]: G.R. Hart and A.L. Ferguson ”Empirical fitness models
for hepatitis C virus immunogen design” Physical Biology 12 066006 (2015)
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3.2 Materials and methods

3.2.1 MSA construction and cleaning

In this work, we compute the fitness landscape for the HCV genotype 1a nonstructural

protein 5B. NS5B is a 591-residue RNA-dependent RNA polymerase responsible for the

replication of the viral genome [162]. Targeting epitopes within this protein has been linked

with spontaneous clearance of HCV infection [4, 8, 48]. Inference of the fitness landscape

for NS5B can identify vulnerable targets within this protein to guide rational immunogen

design.

In principle, our approach is capable of computing fitness landscapes for the entire 3011-

residue HCV proteome, but too few sequences currently exist in clinical databases to con-

struct statistically robust models. Accordingly, we are currently constrained to compute

landscapes for individual proteins for which the ratio of sequences to residues exceeds ap-

proximately 3:1 such that our models are statistically robust. As more HCV sequences

become available, we intend to compute full proteome models capable of capturing the im-

pact on viral fitness of mutational couplings within, and between, all HCV proteins.

A multiple sequence alignment (MSA) of NS5B protein sequences was constructed from

consensus strains sequenced from hosts infected with HCV genotype 1a. We restricted these

sequences to drug näıve hosts so as not to contaminate the models with the impact of drug

therapy on the mutational evolution and effective fitness of the virus. Genotype 1a NS5B

sequences were downloaded from the Los Alamos National Laboratory HCV database (http:

//www.hcv.lanl.gov) [167–170] (925 sequences), and supplemented by sequences provided

from the lab of Dr. Todd Allen at Harvard Medical School (412 sequences; accession numbers

are provided in table C.1). We constructed the MSA by aligning these sequences against

the H77 reference sequence using the VirAlign tool available at (http://www.hcv.lanl.gov)

[167]. We then cleaned the MSA by eliminating 361 sequences for which more than 5% of the

591 amino acid residues were unknown (i.e., inconclusively identified by sequencing), leaving
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976 sequences containing 1.4% or fewer unknown residues. Finally, we identified 308 of the

591 residues as fully conserved within the MSA, allowing us to eliminate these residues from

our fitting procedure. The final MSA contained 976 sequences and 283 mutating positions,

leaving us with a ratio of sequences to positions of 3.4:1.

While it is possible that phylogenetic associations between the sequences can be impor-

tant, based on the geographic and ethnic diversity of the hosts within the database, we make

the simplifying assumption that the sequences are independently and identically distributed.

We validate this assumption in post hoc comparisons of our model against independent ex-

perimental measurements and clinical data. It is, however, of continuing interest to us to

develop methodologies to deconvolute effects of phylogeny and intrinsic fitness [106], which

is expected to be of particular importance in the analysis of sequences drawn from multiple

viral subtypes.

We previously showed that the effects of host immune pressure on strain distribution

is averaged out if the MSA samples a genetically diverse host population [12, 106, 137].

Thus, the inferred landscape reflects intrinsic viral fitness and contains no “footprints” of

adaptive immunity. The geographic and ethnic diversity of the database suggests that the

MSA contains sufficient genetic diversity to eliminate signatures of adaptive immunity. We

confirmed this by estimating the frequency with which each amino acid position in NS5B

is expected to be subject to immune pressure using the approach detailed in ref. [106]

(also see section C.1). Direct comparisons of our model predictions against clinical data

and experimental measurements described below, provide further support that our inferred

NS5B fitness landscape does not contain footprints of adaptive immunity.

3.2.2 Fitness landscape inference

As discussed in chapter 2, there are many ways to solve the inverse problem of fitting the hi

and Jij to reproduce the observed one and two-body amino acid frequencies [139, 143, 144]. In

this work we employ our previously developed parallelized semi-analytical iterative gradient
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descent algorithm [12, 111, 139]. We use Bayesian regularization employing a Gaussian

prior to penalize large Jij parameter values and stabilize and accelerate model convergence,

P ({Jij}) = Πije
−γJ2

ij [171]. We verified that the inferred model parameters were robust to

the regularization strength over the range γ = 0.025-0.20. Full mathematical and algorithmic

details of the fitting procedure are provided in appendix A.

We note that a model constructed to reproduce the higher order moments of the amino

acid distribution (triplets, quads, etc.) would, in principle, better describe the distribution

of viral strains within the evolutionarily accessible sequence space. However, the number

of parameters increases exponentially with model order, making inference computationally

intractable. The fitted model described by eqn. 2.4 not only accurately reproduces the

one- and two-body amino acid distributions from which it was parametrized, it also predicts

the three-body frequencies (figure C.1 in the appendix), demonstrating that it implicitly

captures higher order mutational correlations in the MSA [12, 111]. Furthermore, we have

shown that statistically-significant mutational couplings important in dictating viral fitness

exist within the MSA, and that our model captures these epistatic effects (figure C.2 in the

appendix).

3.3 Results and discussion

Before using our fitness landscapes for computational vaccine design, it is critical that we

first test the capacity of our model to predict the fitness of strains not contained in the

fitting data. This is done by direct quantitative comparisons of the fitness predictions of our

models against independent experimental and clinical data not used in model construction.

Specifically, we present five separate validations of the agreement of our NS5B fitness land-

scape with: (1) experimental measurements of the in vitro replicative fitness of mutant viral

strains, (2) clinically documented high fitness escape mutations, (3) the location of escape

mutations within particular epitopes, (4) the mutational evolution of HCV strains revealed
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by longitudinal sequencing of infected hosts, and (5) clinically documented protective HLA

types. We then proceed to use the validated landscape for the in silico design of CTL vaccine

immunogens.

3.3.1 Comparison of model predictions with in vitro replicative

fitness measurements

The first test of our model is to validate its predictions against in vitro fitness measure-

ments. If the fitness landscape truly represents intrinsic viral fitness, then by eqn. 2.4 the

relation E(~z) ∝ − log (f(~z)) should approximately hold. We tested this by gathering 31

previously published experimental measurements of in vitro replicative fitness of engineered

NS5B mutants containing up to four polymorphisms [3–5].

Since genotype 1a lacks a robust replicon, two of these studies, refs. [4, 5], used a chimera

1a/1b replicon, with the polymerase coming from the genotype 1a strain H77 (GenBank

Accession No. M67463), to enhance the signal. Our MSA did not contain six of the residues

in this H77 polymerase. In order to assign an energy (fitness) to this sequence, we augmented

our model to incorporate these six additional residues using pseudo-counts as detailed in the

appendix (section C.2 also see ref. [111]. The remaining study, ref. [3], used the standard

H77S.3 genotype 1a replicon with a mutation (C2466S) that was already present in our

model.

A plot of the energy of each of the 31 mutants assigned by our model relative to the wild

type, (E−Ewt), versus the logarithm of the relative fitness, log(f/fwt), exhibits a strong and

statistically significant negative correlation (figure 3.1). For each mutant the wild type strain

is defined as the replicon used in the experimental assay. If instead we uniformly define the

wild type sequence as the H77S.3 reference strain, we can assign energies to each strain using

our unaugmented model and the strong and significant correlation remains (figure C.3).

Within a particular individual, the effective fitness of the virus is a function of both
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Figure 3.1: Comparison of the in vitro replicative fitness relative to wild type, f/fwt, mea-
sured for 31 engineered NS5B mutants containing up to four polymorphisms [3–5] against
the energy relative to wild type, (E−Ewt), of each strain predicted by our model. A strong
and statistically significant negative correlation, ρSpearman = −0.72 (p = 8.2 × 10−6, two-
tailed t-test), validates our fitted model as a good predictor of intrinsic viral fitness. A linear
least-squares fit is provided to guide the eye, and error bars delineate estimated uncertainties
in the measured relative fitness.

the intrinsic viral fitness and the host immune pressure. Assays of in vitro replicative fit-

ness measure intrinsic fitness. The statistically significant correlation between our model

predictions and the in vitro fitness measurements provides strong empirical evidence that

our models capture intrinsic viral fitness. This provides validation of the expectation that

the impact of host immunity on the viral fitness have been averaged out over the MSA (cf.

section C.1), and that the resulting fitness landscapes are not contaminated by footprints of

adaptive immunity [12, 106, 137].
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3.3.2 Predicted fitness costs of clinically observed escape

mutations

HCV establishes chronic infection in 70-80% of patients despite many of them mounting an

adaptive immune response [42, 172]. While there does not appear to be a single dominant

mechanism for secondary failure of the adaptive immune system, escape mutations in CTL

epitopes have been shown to play an important role [16, 173, 174]. Viral strains can escape

CTL recognition by establishing one or more point mutations within, or flanking, the target

epitope [175]. Clinically observed escape mutations are expected to be those that allow the

virus to evade immune recognition with minimal cost to its replicative fitness. If our inferred

fitness landscapes accurately represent intrinsic viral fitness, high fitness escape mutations

should be assigned low energies by our model, providing the second test of our model.

Using published accounts of escape strains sequenced from HCV infected individuals,

and data on proximate HLA associated polymorphisms, we compiled a list of 24 single, eight

double, and three triple escape mutations within NS5B [3–6, 11, 16, 176–178]. Taking the

H77 reference sequence used in the majority of in vitro measurements (cf. section 3.3.1) as

the wild type, we computed the energy assigned by our model to each mutant relative to the

wild type, ∆E = (E − Ewt). Some of the observed polymorphisms were not present in the

MSA, and therefore absent in our model. In order to make energy predictions for all escapes

we augmented the model with the missing amino acids using the procedure detailed in the

appendix (section C.2). The particular mutants, HLA associated epitopes, and computed

energies are listed in table C.2. We present the location of each mutant on the energy

spectrum of all possible mutants in figure 3.2.

Single mutants. Twenty-one of the 24 single mutants fall in the bottom 31.2% of the

spectrum of 944 possible single mutants (∆E < 6.82). The remaining three – K2471R,

Q2467K, and R2937S – fall in the 36th, 74th and 96th percentiles respectively. That these are

apparently rather high energy (low fitness) escape mutations can be understood by the fact
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Figure 3.2: Clinically observed escape mutants are low energy (high fitness) strains within
our model. The abscissa records the 24 single, 8 double, and 3 triple clinically reported
escape mutations within NS5B. The ordinate locates the mutants on the energy spectrum
of all possible mutants of the same order as assigned by our model. In all cases residues
outside of the epitope were set to the H77 reference sequence. The particular mutants are
listed in table C.2.

that they are almost always observed in concert with compensatory mutations that offset the

fitness penalty of these polymorphisms [3, 4]. We discuss the details of these compensatory

mutational patterns in section C.3 of the appendix.

Double mutants. Six of the eight double mutants fall in the bottom 11.1% of the spec-

trum of all possible 444,005 doubly mutated strains (∆E < 10.76). The remaining two –

K2937G/I2940T and Q2467K/K2471R – fall in the 33rd and 61st percentiles, respectively.

These apparently high energy (low fitness) escape mutations are almost always observed in

concert with compensatory mutations that offset their fitness cost [3, 4] (section C.3).

Triple mutants. Of the three clinically observed triple mutants, two fall in the bottom

3% of the energy spectrum of all 138,734,750 triple mutants (∆E < 10.30), with the third
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lying in the 9th percentile (∆E < 16.48).

That our model predicts low fitness costs to clinically observed escape mutations provides

further support that it quantifies intrinsic viral fitness uncontaminated by footprints of

adaptive immunity [12, 106, 137].

3.3.3 Predicted location of escape mutations in CTL epitopes

As a third test of our model we assess its ability to predict which positions within an epitope

are most likely to support escape mutations. A viral strain containing an epitope recognized

by the host immune system can escape by making one or more mutations in the target

epitope [175]. Under the simplifying assumption that all mutations are equally effective in

abrogating CTL recognition, escape mutations should minimize the fitness penalty and thus

maximally preserve viral fitness. If our landscape is a good model of intrinsic viral fitness,

we should expect that the clinically documented escape mutations correspond to the highest

fitness (lowest energy) mutations within the epitope.

By cross-referencing the list of escape mutations compiled in section 3.3.2 with defined

CTL epitopes [3–6, 11, 16, 176–178], we identified nine exact epitopes and three epitope-

containing regions with clinically documented escape mutations. We calculated the energy

cost, ∆E, associated with each polymorphism observed within our MSA for these epitopes

using the H77 reference sequence as the wild type sequence.

Within the B*27 restricted GRAAICGKY2936−2944 epitope, for example, the two most

common escape mutations, R2937K and I2940T, have the lowest, and third lowest, energy

costs, respectively, and a less commonly observed escape, K2943R, has the second lowest

cost (figure 3.3). All three point mutations are the lowest energy polymorphisms at their

respective positions. The R2937S escape has the largest energy cost, but – as mentioned in

section 3.3.2 – in addition to being only rarely observed it is always accompanied by the two

compensatory mutations E2875K and P2881Q that fall outside of the epitope region [4].

Of the remaining 11 epitopes, nine are reported to escape with a single mutation while
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Figure 3.3: Comparison of the energy costs (fitness penalties) relative to the H77 wild type
reference sequence predicted by our model for all polymorphisms observed within our MSA
occurring within the B*27 associated GRAAICGKY2936−2944 epitope. The energy cost as-
sociated with each single mutation, ∆E, is along the abscissa, and the mutations are shown
along the ordinate. Dashes indicate unmutated positions, and letters the mutant amino acid
residue. The letter X indicates an unknown amino acid type that was inconclusively identi-
fied by experimental sequencing within the ensemble sequences constituting the MSA used
to fit our model. The greater the energy cost, the higher the fitness penalty. The bars corre-
sponding to clinically observed escape mutations – R2937K, R2937S, I2940T, and K2943R
– are colored in red. Blue bars denote mutations for which no specific clinical information is
available. The two most commonly observed clinical escape mutations, R2937K and I2940T,
correspond to the two of the three lowest energy (highest fitness) polymorphisms predicted
by our model.

the other two require at least two mutations to abrogate recognition [3, 5, 6, 11, 16, 176–178].

Of the nine epitopes requiring only a single mutation, seven possess at least one documented

escape mutation corresponding to the first, second, or third lowest energy polymorphism
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(figures C.4A-G). The eighth epitope’s escape mutation lies at the ninth lowest energy cost

position, but there is evidence that a number of mutations in this epitope do not effectively

abrogate CTL pressure [8] suggesting that higher fitness cost polymorphisms may be required

to effect escape (figure C.4H). The escape mutation reported in the ninth epitope is predicted

by our model to be the seventh lowest cost mutation (figure C.4I).

For the two epitopes requiring at least two mutations to effectively escape, each has

the lowest or second lowest single mutation as one of the two required mutations. In

ARMILMTHF2841-2849, one of the double mutants known to confer escape has the lowest

energy cost of all double mutants in the epitope (figure C.5A). In THFFSVLIARDQ2847-2858,

the double escape falls in the bottom fifth of all double mutants in the epitope (figure C.5B).

Our model predicts that 9 of 12 epitopes have documented escape mutations among the

three least costly mutations. In agreement with the expectation that mutational escape

should occur among the lowest fitness cost positions, this result provides further support

that our model represents intrinsic viral fitness.

3.3.4 Viral evolution in longitudinal studies of individual hosts

As a fourth test of whether our model reflects intrinsic viral fitness,we compared our predic-

tions to longitudinal studies of four drug näıve hosts over the first 1.5-4 years of infection

[3, 6]. Two of these patients (BR554 and M003) possessed viral strains containing residues

not present in the MSA we used to fit our model, requiring us to augment our model with

pseudo-counts to assign energies to strains containing these polymorphisms using the ap-

proach detailed in section C.2. Possessing only a fitness landscape for protein NS5B, our

analysis and interpretation of the longitudinal data is necessarily restricted to the viral mu-

tations within, and CTL responses against, a single HCV protein. We shall show that the

longitudinal data is consistent with the predictions of our NS5B fitness model, but note that

in the absence of full proteome fitness models our analysis necessarily neglects the fitness im-

pact of T-cell and B-cell responses against other proteins, and other factors influencing viral
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dynamics such as innate immune pressure, interferon production, and hepatocyte apoptosis.

Furthermore, incomplete characterization of the full viral quasispecies at discrete time points

means that the longitudinal data cannot capture events occurring below the experimental

detection threshold, or on time scales below the sampling frequency.

Longitudinal consensus data. We first consider three individuals – 03-32, BR111, and

BR554 – for whom consensus sequence data at each time point was reported by Kuntzen et

al. in ref. [6] and present the energy assigned to the reported consensus strain within each

individual as a function of time (figure 3.4A). Patient 03-32 was reported to mount only

one detectable CTL response within NS5B, against epitope LGVPPLRAWR2912−2921 (HLA

association unknown) [6], and over the course of the 26.5 month study the infecting consensus

sequence did not evolve any mutations in the NS5B protein. This situation is consistent with

infection by a high fitness founder strain that is subject to low immune pressure and/or for

which escape mutations within targeted epitopes carry very large fitness penalties. In good

agreement with this scenario, our model assigns a low energy (high fitness) of E = 9.7 to

this strain, placing it in the 15th percentile of the energy spectrum of the 976 strains in

our MSA. Furthermore, as we discuss below (see section 3.3.5), our model predicts escape

mutations in this epitope to be among the costliest of all known epitopes in NS5B. This

suggests the evolution of polymorphisms in this protein region to carry very high fitness

costs and may take years to arise [6], thereby rationalizing the absence of observed escape

mutations despite the reported CTL immune response.

Patient BR111 likewise mounted only one detectable CTL response within NS5B, against

the HLA-A*02 restricted ALYDVVSKL2594−2602 epitope, but accumulated three mutations

over a period of 29.5 months [6]. Our model assigns a high energy (low fitness) of E = 46.0

(96th percentile of the MSA energy spectrum) to the consensus sequence reported at 2.5

months. The first mutation to arise, L2604P at 7.5 months, increased the energy to E = 47.6

and is just outside the targeted epitope [6]. The epitope prediction tools on the Immune

Epitope Database (http://www.iedb.org) [179] indicate that this flanking mutation impairs
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Figure 3.4: Temporal evolution of viral fitness predicted by our model in longitudinal studies
of four drug näıve patients over the first 1.5-4 years of HCV infection. (A) Viral evolution
within three individuals – Patients 03-02, BR111, and BR554 – for whom consensus sequence
data was available at each time point [6]. On the left we present plots tracking the energy
(fitness) of the consensus strain predicted by our model at each time point. Low energy
corresponds to high fitness. On the right, we list the particular mutations observed within
the NS5B region of the consensus strain, and the energies assigned to the strains by our
model. (B) Clonal sequencing results for the viral evolution within an infected mother –
Patient M003 – who gave birth to two infected children – Patients C003 and D003 – over the
course of the study [3]. The plot on the left tracks as a function of time the average energy
over all sequences reported at that time point, Ē, for each of the three hosts. The shaded
periods in the plot indicate the pregnancies of M003 with C003 and D003. The table on the
right lists the numerical values of the data in the plot. A full accounting of the individual
sequences, mutations, and energies are provided in the appendix C.4

antigen processing and presentation and thus is selected despite its slightly detrimental

impact upon viral fitness. This hypothesis is further supported by the observation that our
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model predicts all other point mutations within the epitope to carry higher fitness penalties.

The polymorphisms E2692Q – arising at 14.5 months and increasing the energy by ∆E = 2.5

– and S2482N – arising at 29.5 months and increasing the energy by a further ∆E = 1.9 –

both elevated the energy (reduced fitness) and are not part of any reported CTL epitope.

Both polymorphisms fall within peptides 20 amino acid long that are known to contain HLA

Class II epitopes [179–181] and may offer escape from CD4+ T-cells, although the patient’s

CD4+ response was not characterized.

For Patient BR554, consensus sequences over 19 months and the infecting sequence were

available [6]. Our model assigns a low energy (high fitness) to the infecting strain of E = 11.6

(23th percentile of the MSA energy spectrum). At 2 months, three mutations, K2930R,

G2963S, and S2496L – the latter of which reverted by the next sampling point – arose,

with relatively modest impact on fitness, increasing the energy by ∆E = 9.0. At 7 months,

six new mutations arose, H2453N, A2813V, I2854M, S2926N, V2704I, and V2905M – the

latter two of which reverted by the next sampling point – with a large impact on the fit-

ness, increasing the viral energy by ∆E = 21.5. Two of these mutations – H2453N and

I2854M – occurred within the two epitopes against which CTL responses were reported

– SLLRHHNLVYSTTSRSA2449−2465 and THFFSVLIARDQ2847−2858 (HLA associations un-

known) [6] – offering an explanation for the tolerance of such costly polymorphisms. The

final mutation, F2849L, arose at 15 months within the THFFSVLIARDQ2847−2858 epitope.

Improving the fitness by ∆E = −16.4, we suggest a role for this polymorphism in compen-

sating for the fitness penalties associated with the escape mutations.

If our model really does capture intrinsic viral fitness, then in individuals who mount

weak immune responses, our model should predict the virus to maintain high fitness (low

energy) throughout the course of infection. In contrast, in individuals who mount strong

and broad immune responses, our model should predict the virus to exhibit a decrease in

fitness (increase in energy) over time as it evolves escape mutations in response to host

immune pressure. The viral load of Patient 03-32 remains nearly flat over the course of the
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study at 106-107 copies per ml [6]. This observation is consistent with an ineffective CTL

response, and in good agreement with our model predictions that the virus should maintain

high fitness (figure 3.4A). In contrast, the viral loads of Patients BR111 and BR554 fall

from 104 copies per ml at 2 months (the first measured time point), to 100 copies per ml

at 4 months, before rebounding to approximately 107 copies per ml at the termination of

the study [6]. This response of the viral load is consistent with a robust acute phase CTL

response followed by secondary failure, and is in good agreement with our model predictions

of an initial reduction in viral fitness (increase in energy) due to the appearance of escape

mutations within identified CTL targets followed by mutational progression to a fitness

(energy) plateau that may be attributed to viral escape (figure 3.4A).

Longitudinal clonal sequencing data. We now consider Patient M003 and the two children

to whom she gave birth during the study and vertically transmitted HCV infection – Patients

C003 and D003, delivered at 1.3 months and 17.2 months, respectively – for whom clonal

sequencing data were reported by Honegger et al. in ref. [3]. For concision we present the

mean energy assigned by our model to the reported sequences at each time point, Ē, to

show that the trends in viral fitness are consistent with the expected trends due to the

maternofetal immune tolerance mechanism that suppresses the mother’s immune response

during pregnancy (figure 3.4B). We provide an in-depth reporting of each clonal sequence

observed and its associated energy in the appendix C.4.

M003 became acutely infected with HCV while pregnant with C003. At month 0 of the

study, the average viral energy was Ē = 28.8, which increased slightly to Ē = 32.2 at the

time of delivery at 1.3 months. By 7.2 months (25 weeks after delivery of C003) the average

energy of the viral strains in M003 had more than doubled to Ē = 68.4, and by 10.7 months

had further increased to Ē = 97.0. Although M003 possesses HLA-B*0801 and HLA-

B*1501 class I alleles, the maternofetal immune tolerance mechanism impaired the action

of HCV-specific CTLs during pregnancy [3], allowing the virus to maintain high fitness (low

energy) up until delivery of C003 at 1.3 months, making transient mutations uncorrelated
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with host immune pressure (section C.4). After delivery, the maternofetal immune tolerance

mechanism disappeared, and M003’s strengthened immune response produced mutations

in the B*15 restricted LLRHHNMVY2450−2458 and SQRQKKVTF2466−2474 epitopes (section

C.4). This caused a large decrease in average viral fitness (increase in energy) over the period

1.3-10.7 months.

The pattern of elevated viral fitness during pregnancy followed by reduced fitness after

delivery is repeated during M003’s second pregnancy with D003, which commences at about

about 8.3 months. After the fitness low (energy high) at 10.7 months, the average viral

fitness increased during the second and third trimester of pregnancy, with the average energy

falling to Ē = 69.7 by 14.5 months and Ē = 59.3 by 16.8 months. This improvement in

fitness is associated with some reversion of escape mutations within the B*15 restricted

epitopes (cf. section C.4). After delivery of D003 the fitness falls (energy increases) due to

the disappearance of maternofetal immune tolerance, with the average energy increasing to

Ē = 65.8 by 18.2 months. After a small improvement in fitness at 21.5 months (Ē = 55.1)

the fitness drops to its lowest value at 36.9 months, (Ē = 97.4) 16.8 months after delivery

of D003.

At the last measured time point of 49.0 months – four years after infection – the average

energy falls to Ē = 47.3 corresponding to an increase in viral fitness. This fitness increase is

associated with the appearance of a new mutation within the B*15 -SQRQKKVTF2466−2474

epitope (section C.4). We suggest that this observation may correspond to the development

of a slowly evolving compensatory mutation that restores viral fitness as the viral quasispecies

anneals to the host adaptive immune pressure and progresses to chronicity.

Twenty-five weeks after delivery at 7.2 months, the viral strains within child C003 had

an average energy of Ē = 23.2, suggesting that the vertical transmission of HCV to the child

by the mother has given rise to a fit viral quasispecies within the infant that is experiencing

little, if any, immune pressure. C003 inherited the HLA-B*0801 class I allele from M003

which restricts no known epitopes within NS5B, but HLA-B*0801 epitopes in NS3 remained
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unchanged during the course of the full first year of the child’s life. As observed by the

authors of the experimental study, vertical transmission of a highly fit HCV strain from the

immunosuppressed mother may have “outrun” the nascent immune system of the infant [3].

HCV was also vertically transmitted to child D003. Sequences within D003 12 weeks after

birth (at 20.1 months) contain polymorphisms within the HLA-B*15 associated epitopes

LLRHHNLVY2450−2458 and SQRQKKVTF2466−2474 that were present in the mother before

delivery, constituting a slightly fitter viral population (E = 52.2) than those in the mother

at time of delivery. D003 also inherited the HLA-B*1501 class I molecule that restricts these

epitopes, consistent with the absence of reversion in these epitopes within the first year of

the child’s life.

The predictions of our model for the temporal evolution of viral fitness correlate with the

observed trends in viral load and CTL responses in longitudinal consensus sequencing data

for three infected hosts [6], and also track the expected fitness trends due to maternofetal

immune tolerance in longitudinal clonal sequencing study of an infected mother over the

course of two pregnancies [3]. These findings provide strong support of the fitness predictions

of our model.

3.3.5 Clinically documented protective CTL responses

HCV exists within an infected individual as a collection of closely related mutant strains

known as a quasispeices [34, 174]. We hypothesized that our fitness landscapes can identify

CTL immune responses clinically documented to be particularly effective against HCV as

those that preferentially eliminate high-fitness strains within the quasispecies [12]. This

constitutes a fifth and final test of the model.

Following the approach in ref. [12], we performed Metropolis Monte-Carlo sampling of

our fitness landscapes to generate a population of 99,990 viral strains in which each strain is

represented in proportion to its intrinsic fitness specified by our model. This population may

be conceived of as a hypothetical quasispecies of viral mutants distributed over the fitness
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landscape in the absence of immune pressure [106]. The average energy of a strain in this

ensemble, 〈E〉, provides a measure of the average fitness of the viral population.

We propose that a good immune response will eliminate high fitness (low energy) strains

from the population, causing the average fitness (energy) of the population to decrease

(increase). We simulate the effect of a particular CTL response upon the population by

removing all strains in the viral population possessing wild type residues within the CTL

epitope. We then quantify the efficacy of the response as the change in the average energy of

a strain in the population, ∆〈E〉, upon eliminating those strains. We make a “worst case”

assumption by assuming no cross-reactivity such that single polymorphisms are sufficient to

abrogate immune recognition of an epitope [12, 126].

Certain HLA alleles – most notably B*27 and B*57 – are associated with natural control

and spontaneous clearance of HCV [4, 7, 8, 126, 176, 182, 183]. If our model is a good

reflection of the intrinsic viral fitness landscape, naturally protective CTL responses should

be associated with large increases in ∆〈E〉, corresponding to large decreases in the fitness

of the viral population.

We identified from the Immune Epitope Database (http://www.iedb.org) 24 CTL

NS5B epitopes that were both exactly defined and the HLA association known (table C.3)

[179]. We then calculated ∆〈E〉 for each of these responses (figure 3.5). Of these 24 epitopes,

two are reported as immunodominant – B*57 –KSKKTPMGF2629−2637 (∆〈E〉 = 6.45) and

B*27 –ARMILMTHF2841−2849 (∆〈E〉 = 3.85) – and a third epitope as high on the domi-

nance hierarchy – A*02 –ALYDVVTKL2594−2602 (∆〈E〉 = 3.16) [7–10]. Dominant epitopes

are preferentially targeted among all of the epitopes associated with the same HLA molecules,

effectively curtailing the CTL response against these other epitopes. The remaining 21 of the

24 epitopes are categorized as subdominant, meaning that strong CTL immune responses

are typically not naturally elicited against these targets.

Of the three dominantly presented epitopes against which strong CTL responses are

naturally directed, the two presented by protective HLA alleles – B*57 and B*27 – are
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Figure 3.5: Ranking of 24 NS5B class I HLA epitopes according to the computed energy
penalty, ∆〈E〉, imposed upon the viral ensemble. Epitopes that are reported as immun-
odominant are highlighted in red [7–10]. Of the three immunodominant epitopes, the two
with the highest penalty are presented by protective HLA alleles associated with sponta-
neous viral clearance [4, 5, 8, 11]. The negative ∆〈E〉 values associated with the four lowest
ranked epitopes results from their preferential elimination of low fitness viral strains from
the quasispecies.

assigned higher ∆〈E〉 values by our model than those presented by the non-protective allele

– A*02 [4, 5, 8, 11]. The predictions of our model are consistent with the expectation that

the epitopes presented by non-protective alleles have a lower impact on viral fitness than

those presented by protective alleles. In other words, our model predicts that persons who

naturally control HCV infection preferentially target epitopes that eliminate high fitness viral

strains, leaving the viral quasispecies populated with relatively low-fitness escape strains.

Our model predicts that responses against nine subdominant epitopes presented by a
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variety of HLA alleles impose fitness penalties upon the viral population that are as high

or higher than the immunodominant responses of the protective alleles (∆〈E〉 ≥ 3.85). For

example, our model predicts that the immune response mounted against the HLA-B*55

restricted epitope QPEKGGRKPA2568−2577 epitope (∆〈E〉 = 7.06) would compromise viral

fitness more effectively than the dominantly presented epitope of the protective allele with

the strongest correlation with spontaneous clearance (HLA-B*57 KSKKTPMGF2629−2637,

∆〈E〉 = 6.45). These findings suggest that vaccine immunogens may be delivered to persons

carrying non-protective HLA alleles to elicit potent immune responses against vulnerable

viral epitopes identified by our model that are naturally only subdominant. The systematic

design of such immunogens to exploit viral vulnerabilities identified by our model is the

subject of the next section of the chapter.

3.3.6 In silico design of NS5B CTL immunogens

Having validated our model in comparisons against with five types of experimental and

clinical data, we now proceed to employ it in the rational design of CTL vaccine immuno-

gens. CTL vaccines that deliver complete HCV proteins [48–50] may elicit dominant T-cell

responses against poor viral targets that drown out potent responses against vulnerable

targets [12, 51, 52, 126]. By identifying vulnerable CTL targets that can be targeted dom-

inantly or subdominantly by particular HLA alleles (section 3.3.5), our fitness landscapes

can inform the design of epitope-based vaccine immunogens to prime potent CTL responses

in a particular individual or population.

Although a single immunological correlate of protection against HCV remains to be

defined [34], potent and broad CTL responses against protein NS5 are correlated with spon-

taneous clearance of infection in persons possessing natural HCV immunity [7, 8, 34, 48].

We illustrate the value of our HCV subtype 1a NS5B fitness landscape in the design of

candidate epitope-based vaccine immunogens to elicit CTL immune responses against vul-

nerable NS5B targets. Subtype 1a is the most prevalent HCV subtype in the United States,
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leading us to adopt as our target population the top 66 haplotypes of North Americans,

accounting for 40.9% of the North American population (http://www.ncbi.nlm.nih.gov/

projects/gv/mhc) [184]. By recovering fitness landscapes for other HCV proteins, and for

other subtypes, an analogous approach could be used to design immunogens for other HCV

proteins, subtypes, and populations.

We performed computational immunogen design according to the following protocol. We

first cross-referenced the list of 66 haplotypes with the CTL NS5B epitopes listed in the

Immune Epitope Database (http://www.iedb.org) [179] to identify 24 distinct epitopes

restricted by the class I HLA-A and HLA-B molecules present within this population. We

then constructed all 16,777,215 possible candidate immunogens containing all combinations

of 1, 2, 3, . . . , 24 epitopes, and scored each candidate along three criteria:

Criterion 1 - Population averaged fitness impact ∆〈E〉. The precise immune responses

activated by the immunogen candidate in a particular recipient host depends on which

components of the epitope-based immunogen can be restricted by the HLA alleles of the

host. Assuming that all vaccine-induced CTL responses are activated, and that each response

completely eliminates all viral strains that are fully wild type within their cognate epitope, we

use the procedure described in section 3.3.5 to compute the fitness penalty, ∆〈E〉ji , exacted

upon the viral population by immunogen i = 1 . . . 16, 777, 215 in haplotype j = 1 . . . 66.

We then define the population averaged fitness impact within the North American target

population as, ∆〈E〉i =
∑66

j=1wj∆〈E〉
j
i , where wj is the fraction of the population possessing

haplotype j.

Criterion 2 - Population coverage. Immunogen candidates possessing large values of

∆〈E〉 are predicted to impose large fitness penalties upon the viral quasispecies, but may

only prime effective immune responses in a small proportion of the target population. In

the extreme case, some fraction of the population may possess haplotypes that prevent them

from developing immune responses against any of the epitopes delivered in the immunogen.

To balance these considerations, we adopt as our second criterion the fraction of the target
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population who respond to at least one epitope in the immunogen candidate. This criterion

can be straightforwardly modified to measure the fraction of the population who respond to

more than one epitope. Of the 66 haplotypes in the target population, 18 do not restrict any

of the 24 NS5B epitopes, meaning that we can cover at most 71.2% of the target population.

To attain 100% coverage, we would need to design a vaccine immunogen containing CTL

epitopes from other HCV proteins that can be restricted by persons possessing haplotypes

that cannot target NS5B. As more sequence data becomes available, we propose to extend

our approach to other HCV proteins to design multi-protein epitope-based CTL vaccines

with complete population coverage.

Criterion 3 - Immunogen size. Larger immunogens containing more epitopes can provide

broader population coverage and larger viral fitness penalties by virtue of their size. It may

be beneficial, however, to limit immunogen size due to the increased cost and complexity

of the resultant vaccine [185]. Accordingly, we selected as our third criterion the number of

epitopes in the candidate immunogen.

We locate each of the 16,777,215 candidate immunogens in the three-dimensional space

spanned by the three scoring criterion (figure 3.6). We have identified within this ensemble

the 86 candidates lying on the Pareto frontier [186]. Candidates residing on this frontier

are optimal in the sense that improvements in any one criterion (increased ∆〈E〉, broader

population coverage, smaller immunogen) are necessarily accompanied by a deterioration

in another (reduced ∆〈E〉, narrower population coverage, larger immunogen). Immunogen

candidates away from the frontier are non-optimal in that any one criterion can be improved

without compromising another. We list the compositions and scores of the 86 optimal

immunogens in table C.4.

By massively reducing the search space of all possible 16,777,215 candidate immunogens

by over five orders of magnitude to 86 optimal formulations, our computational platform

offers an inexpensive pre-screening process to identify promising CTL immunogens for ex-

perimental testing. The relative weightings of the three design criteria may be used to inform
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Figure 3.6: Scatter plot of all 16,777,215 NS5B CTL vaccine immunogen candidates (black
crosses) in the three-dimensional design space of: (1) the weighted average fitness impact
in the target population, ∆〈E〉, (2) fraction of the target population that respond to at
least one epitope in the immunogen (fractional coverage), and (3) the number of epitopes
in the vaccine. The target population consisted of the 66 most prevalent haplotypes in
North Americans, accounting for 40.9% of the North American population. Our procedure
identifies 86 immunogen candidates residing on the Pareto frontier (red circles), which are
optimal formulations in the sense that improvements in any one of the three design criteria
are necessarily accompanied by a deterioration in another. The optimal candidates are listed
in table C.4.

which region of the optimal frontier is most desirable for further investigation. For example,

the smallest optimal candidate with the highest possible coverage of the target population,

71.2%, is 10 epitopes (97 residues) in size and possesses a population averaged fitness im-

pact of ∆〈E〉 = 6.6. Alternatively, if immunogen size is not considered a restriction, we may

select from the optimal frontier a 19-epitope (179-residue) candidate with 71.2% coverage of

the target population and ∆〈E〉 = 9.3. We observe that it is straightforward to modify the

scoring criteria, and incorporate additional criteria, without changing the approach.
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3.4 Conclusion

Despite 20 years of research, no HCV vaccine is yet available. The development of an effec-

tive vaccine has been hampered by the high mutability and rapid replication rate of HCV,

producing large diversity in the viral quasispecies and facilitating escape from natural and

vaccine-induced immune responses. Effective prophylactic and therapeutic vaccines should

prime immune responses against vulnerable regions of the viral proteome in which escape

mutations carry a large cost in replicative fitness, without eliciting ineffective responses

against poor targets from which viral escape is easy and carries a small fitness cost.

We have demonstrated an approach to infer the empirical fitness landscape for the NS5B

protein in HCV subtype 1a from viral sequence databases, and validated the predictions of

our model against independent experimental and clinical data. We have used our landscape

to computationally design epitope-based NS5B CTL vaccine immunogens for the North

American population. The immunogens designed by our approach are predicted to redirect

host CTL immune responses to preferentially target vulnerable regions in the virus within

which mutations cripple viral fitness. This inexpensive in silico design platform can serve as

a valuable tool to identify promising immunogen candidates for experimental testing, helping

to alleviate the burden of trial-and-error experimentation and accelerating the search for an

efficacious HCV vaccine.

We are currently extending our approach to other HCV proteins and polyproteins to

capture mutational couplings between viral proteins to enable the design of multi-protein

immunogens, and are partnering with experimental collaborators to test our predicted im-

munogen candidates. We anticipate that with increasing computational power and reducing

sequencing costs, it will soon become feasible within the coming years to apply our tech-

nology to the complete HCV proteome and perform rational in silico design of a complete

anti-HCV immunogen.
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Chapter 4

Using Fitness Landscapes to Show
Treatment Possibilities by Inducing

Error Catastrophe

4.1 Introduction

HIV has killed more then 30 million persons worldwide, with another 30 million infected

[187]. Antiretroviral drugs have rendered HIV infection a manageable condition [187], but

their high cost makes them effectively inaccessible in the developing world [188] and rates

of drug resistant mutations in persons on therapy more than 36 months exceed 20% [189].

A vaccine remains unavailable [190, 191]. The high mutation rate and sequence diversity

of HIV present significant challenges for therapy, but recent computational advances offer

new ways to identify susceptible targets to guide the design of new drugs and vaccines

[12, 51, 106, 111].

We recently presented an approach to translate clinical databases of HIV sequences into

models of the viral “fitness landscape” that quantify viral replicative capacity as a function

of its amino acid sequence [1, 12, 111]. Most viral mutations are deleterious, compromising

fitness, but certain patterns of mutations enable the virus to escape immune surveillance

while maintaining high fitness [51]. Empirical fitness models can explicitly resolve these high

fitness pathways, and reveal vulnerabilities where drug therapy or vaccine-induced immune

pressure can cripple viral fitness [12, 106, 111]. Regarding sequences in the database as

observations from an underlying probability distribution, the least structured (i.e., maximum

entropy) model capable of reproducing the two lowest order moments of the amino acid

Most of this chapter is an excerpt from ref. [96]: G.R. Hart and A.L. Ferguson ”Error catastrophe and
phase transition in the empirical fitness landscape of HIV” Phys. Rev. E 91 032705 (2015)
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frequencies in the clinical database (i.e., frequency with which each single amino acid is

observed in each position, and pairs of amino acids in pairs of positions) is the infinite range

Potts model [111, 139, 148, 192],

P (~z, T ) =
e−βE(~z)

Z(T )
, E(~z) =

m∑
i=1

hi(zi) +
m∑
i=1

m∑
j>i

Jij(zi, zj), (4.1)

where E(~z) is the infinite range Potts Hamiltonian, m is the number of positions in the

protein, ~z is a m-element vector encoding the protein sequence, and each element of ~z is an

integer in the range 1-21 corresponding to the 20 natural amino acids plus the gap or blank

[144]. As in statistical thermodynamics we term E the dimensionless “energy”, Z(T ) =∑
~z e
−βE(~z) the partition function, and β = 1/T the dimensionless inverse temperature, that

we set to unity for the purposes of parameter inference [12, 111, 139, 192]. (In contrast

to the standard expressions, our energy and temperature are dimensionless and we have

eliminated Boltzmann’s constant.) Determination of the model parameters – the one-body

external fields {hi} and two-body pairwise couplings {Jij} – that reproduce the observed

one and two-body amino acid frequencies constitutes solution of a canonical inverse problem

that may be tackled in many ways [111, 139].

Under the ansatz that highly prevalent viral strains should also be highly fit, the preva-

lence of a strain in the population of infected hosts, P (~z), should be a good proxy for its

replicative fitness, f(~z), and thus the energy assigned by our model, E(~z), should be neg-

atively correlated with the logarithmic fitness, log(f(~z)) [12, 106, 111]. This relationship

can be derived exactly under restrictive assumptions [109], and we have shown that under

mild conditions on the sequences in the clinical databases, this relationship holds generically

[106]. As described in chapter 3, we have inferred and validated much models of viral fitness

against clinical and experimental data.

Since the model parameters are fitted at a temperature of unity, Top=1 is the effective

“biological operating temperature” [139]. Modulating T away from unity corresponds to
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a uniform scaling of the {hi} and {Jij} parameters [139]. As T→0, the fitness landscape

predicts the lowest energy (highest fitness) strain to dominate the viral population, whereas

for T→∞, all strains become equally represented independent of energy (fitness).

In this chapter we show that the fitness landscape for the p6 protein in HIV-1B predicts

that the viral population is poised close to a phase transition at T=1.20 between a high-

fitness, low-diversity (i.e., low-energy, low-entropy) and a low-fitness, high-diversity (i.e.,

high-energy, high-entropy) population, and that the transition may be induced – and viral

fitness crippled – by elevating the mutation rate or forcing mutations at particular amino

acid positions.

4.2 Fitness landscape

4.2.1 Model inference

An ensemble of 1824 DNA sequences of the HIV-1 p6 protein were downloaded from the

LANL HIV database [193]. Sequences were restricted to subtype B – the most prevalent form

in Europe and the Americas – treatment-näıve hosts, and not classified as “problematic”.

Sequences were aligned to the HXB2 reference sequence [194], and translated to the cognate

53 amino acid protein sequence. Ambiguous codons were translated as a blank. We fitted

the {hi} and {Jij} parameters in eqn. 2.4 using the approach in appendix A.

4.2.2 Model validation

Protein p6 is less well experimentally and clinically studied than the other HIV Gag pro-

teins [12, 111], but analysis by Brumme et al. of the IHAC cohort of chronically infected

hosts identified two statistically significant p6 escape mutations directly associated with T-

cell immune pressure: B40-E34D (mutation from E (Glu) to D (Asp) at p6 position 34 in

an epitope presented by the human leukocyte antigen (HLA) B40) and A68-R42K [195].
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Particular contiguous groups of amino acids known as epitopes are recognized by T-cells

when all positions contain wild type (most probable) amino acids [196]. The virus escapes

immune recognition by mutating at one or more of the positions in the epitope. Cross ref-

erencing the two escape mutations with the LANL T-cell epitope maps [193], we identified

the former as associated with the B40-K33ELYPLTSL41 cytotoxic T-cell (CTL) epitope, and

the latter with the A68-K33ELYPLTSLRS43 and A68-E29PIDKELYPLTSLRS43 helper T-

cell (Th) epitopes. If we assume that all polymorphisms within the targeted epitope are

equally efficient at mediating escape, then the virus should make mutations incuring the

smallest energy costs (lowest fitness penalty). Our model predicts that of all the p6 poly-

morphisms in the clinical sequence database (i) the E34D and R42K escapes are the single

lowest energy polymorphisms at these two positions, and (ii) the E34D escape is the 2/69

lowest energy polymorphism within the B40-K33ELYPLTSL41 epitope, and the R42K escape

as the 1/73 and 1/118 lowest energy polymorphism within the A68-K33ELYPLTSLRS43 and

A68-E29PIDKELYPLTSLRS43 epitopes, respectively. That our model predicts the clinically

observed escape mutations to incur the smallest energy cost (fitness penalty) provides sup-

port that it reflects intrinsic viral fitness. We observe that analogous models for HIV Gag

p17 and p24 have been validated against the more comprehensive clinical and experimental

data available for these proteins [12, 111].

4.3 Error catastrophe

4.3.1 Density of states

Computing the partition function in eqn. 2.4 “solves” the Potts model in the sense that

nearly all thermodynamic quantities are calculable from Z(T ) [197]. We may express the par-

tition function as a sum over energy levels, Z(T ) =
∑

~z e
−βE(~z) =

∑
E g(E)e−βE, where g(E)

is the density of states. We developed a parallel implementation of the Wang-Landau algo-

rithm [198, 199] described in refs. [200, 201] to estimate the density of states, ĝ(E)=C×g(E),
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Figure 4.1: Thermodynamics of HIV-1B protein p6. (a) Density of states estimated by Wang-
Landau sampling. (b) Dimensionless energy, U , entropy, S, free energy, F , and heat capacity,
Cv, as a function of the dimensionless temperature, T=β−1. (c) The microcanonical caloric
curve, T (E), which has a negative gradient over the region E=35–45. (d) The canonical
distribution, P (E, T ), at (left to right) T=0.8:0.1:1.6 exhibits a bimodal distribution at
Tcoex=1.20.

up to a multiplicative constant, C, that we fix by asserting the uniqueness of the lowest

energy (highest fitness) wild type strain (figure 4.1(a)). From Z(T ) we computed the en-

ergy, U(T )=−∂lnZ(T )/∂β, free energy, βF (T )=−lnZ(T ), entropy, S(T )=βU(T )−βF (T ),

heat capacity, Cv(T )=∂U/∂T , microcanonical temperature prescribed by the caloric curve,

T (E)=[∂S(E)/∂E]−1=[∂(lng(E))/∂E]−1, and canonical distribution, P (E, T )=g(E)e−βE/Z(T )

(figure 4.1(b-d)).

Phase transitions are formally defined in infinite systems as non-analyticities in the equa-

tion of state, but there have been many studies of finite system analogs of bulk transitions
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[92]. We observe a jump in U(T ) and S(T ), sharp peak in Cv(T ), bimodality in P (E, T ),

and a negative gradient in the microcanonical caloric curve – indicative of positive curvature

in S(E) and a negative microcanonical heat capacity, Cv(E)=−(∂S/∂E)2/(∂2S/∂E2) – at

the coexistence temperature, Tcoex=1.20, defined by equal areas below the peaks of P (E, T )

[198] (figure 4.1). These are all (equivalent) indicators of a finite system phase transition in

the sequence space of p6 at Tcoex=1.20 [92, 202].

Figure 4.2: Prevalence of mutant strains. (a) The average fraction of non-wild type residues
per strain, fnet, exhibits a sharp jump at Tcoex=1.20. (b) The fraction of strains in the
population that are a Hamming distance of k=0,1,2 from the wild type strain as a function
of temperature.

4.3.2 Prevalence of mutant strains

In performing Wang-Landau sampling, we also collected estimates of the average fraction

of the 53 amino acids that were non-wild type for all sequences of a particular energy,

fnwt(E), and the fraction of sequences containing precisely k={0, 1, 2} non-wild type amino

acids, Hk(E). Combining these distributions with our density of states, we computed these

quantities as a function of temperature using the identity, X(T ) =
∑

E X(E)g(E)e−βE/Z(T )

[203] (figure 4.2). Consistent with the sharp increase in the energy and entropy of the viral

population (i.e., decrease in fitness and increase in diversity) at Tcoex=1.20, we observe a
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concomitant jump in the fraction of mutant residues per strain, fnwt(T ). At Top=1, the

fraction of strains in the viral population that are wild type, contain a single mutation,

and contain exactly two mutations are H0(T )=0.34%, H1(T )=3.0%, and H2(T )=7.8%. At

Tcoex=1.20 these fractions are 0.0079%, 0.11%, and 0.45%, with 99.4% of strains containing

three or more point mutations.

Figure 4.3: Artificial Hamiltonians generated by ten random shuffles of the {Jij} parameters
(dotted lines), and ten shuffles of the {hi} and {Jij} parameters (dot-dashed lines), do not
show signatures of the phase transition exhibited by p6. (a) The sharp peak in Cv disappears,
and (b) the caloric curve does not possess any region of negative gradient.

4.3.3 Permutation test

To determine whether the observed phase transition is a generic property of our Potts Hamil-

tonian, we computed the density of states for 10 artificial Hamiltonians constructed by ran-

dom shuffling of the {Jij} parameters leaving the {hi} parameters intact, and 10 in which

both the {hi} and {Jij} parameters were independently shuffled. In all cases the signatures

of the phase transition – jump in U(T ) and S(T ), bimodality in P (E, T ), back bending in

T (E), and sharp peak in Cv(T ) – vanished (figure 4.3), indicating that the phase transition

is contingent on the precise structure of external fields and mutational couplings within the

p6 protein.
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4.3.4 Interpretation of T

The high replication and mutation rates of HIV cause it to exist as a quasispecies, or cloud

of closely related mutant strains, whose nonequilibrium evolution is described by Eigen’s

equation [62, 79, 80, 94]. Leuthäuser mapped Eigen’s equation to the equilibrium properties

of an 2D lattice model [84, 204]. We have shown that the Ising models inferred using our

approach (i.e., eqn. 2.4 with binary ~z elements denoting wild type and mutant amino acids)

well approximate the equilibrium distribution of strains in Leuthäuser’s formulation [106].

Under this correspondence, β=T−1=ln
√
q/(1− q), where q is the per position probability

of correctly copying an amino acid in a viral replication event. In the limit of perfect

replication fidelity (q→1) T→0, whereas for random copying (q→0.5) T→∞. Extending this

correspondence to the Potts model, we may interpret T as an increasing function of the viral

mutation rate, and the proximity of the phase transition at Tcoex=1.20 to Top=1 is precisely

analogous to the observation that the HIV error rate lies very close to the error catastrophe

beyond which there is lethal error accumulation, and the quasispecies collapses [62, 89–

91, 94, 99]. The existence of the viral error catastrophe is well established in theoretical

models of viral mutational dynamics [62, 82, 88], and a recent study of HIV employing

theoretical fitness models motivated by experimental data detected an error catastrophe in

both quasispecies models and stochastic population genetics-based simulations [82]. To the

best of our knowledge, the present work represents the first time that the error catastrophe

has been detected in an empirical model of viral fitness. Experimental reports supporting an

HIV error catastrophe in vivo have motivated clinical trials of an HIV mutagen [100, 101],

but confounding factors, such as cellular resource scarcity at high mutation rates and the

existence of a competing “extinction threshold”, have so far precluded the unambiguous

confirmation of this transition [82, 205, 206].

The proximity of the phase transition is thought to convey survival advantage by provid-

ing a phenotype reservoir [90], maximizing adaptability [99], and optimizing immune escape
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[62]. Sella and Hirsh have proposed that a viral quasispecies should minimize a “free fit-

ness”, G=U − TopS, as an optimal balance between fitness and diversity [109]. We find that

G(T )=U(T )−(Top=1)S(T ) exhibits a minimum at T=1.00, suggesting that the quasispecies

is structured in accordance with this principle. Immunologically, we may exploit the prox-

imity of the transition to induce a large increase in the average energy (decrease in fitness)

of the viral population, U(T ), by a small increase in T . In practice, Top may be pushed

beyond Tcoex=1.20 by drug therapies that elevate the viral mutation rate [102, 103]. Promis-

ing results have emerged in recent years [100, 101], but the clinical translation of mutagens

designed to exploit the purported error catastrophe warrants careful further study [38].

Figure 4.4: Impact on the average energy of the viral population at the operating tempera-
ture, U(Top=1), by forcing (a) single mutations away from the wild type residue at each of
the 53 amino acids (circles), and (b) double mutations at pairs of the 17 positions at which
single mutations caused a Tcoex to fall below T=1.1 (crosses).
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4.4 Inducing the error catastrophe

4.4.1 One and two-point mutations

We hypothesized that it may also be possible to induce the phase transition by forcing the

virus to make mutations at particular positions in the protein. To test this conjecture,

we recomputed the density of states under the constraint that the virus was forbidden from

mutating to strains in which the amino acid at a single position i was wild type for each of the

i=1. . . 53 positions. Rejection of trial moves to these forbidden states in the Wang-Landau

algorithm were treated according to ref. [207]. As illustrated in figure 4.4, forcing single

point mutations depresses Tcoex with an attendant increase in the average energy (decrease

in fitness) of the viral population. Remarkably, forcing a point mutation in the amino acid at

position i=11 depresses the coexistence temperature to Tcoex=1.01, and more than doubles

the population energy at the operating temperature from U(Top=1)=13.5 (cf. figure 4.1(b))

to 30.7.

Application of mutational pressure to any single position does not, however, depress Tcoex

below Top=1. Accordingly, we identified the 17 positions in the protein at which mutational

pressure pushed Tcoex < 1.1, and recomputed the density of states for the (17×16)/2=136

systems constrained such that pairs of amino acids at positions i and j within this set were

both forbidden to be wild type. As illustrated in figure 4.4, all 136 instances of two-point

mutational pressure induced the phase transition (i.e., Tcoex < 1), with the coexistence

temperature maximally depressed to Tcoex=0.81 by positions (i=11, j=37), and the average

energy maximally elevated to U(Top=1)=47.7 by positions (i=44, j=53).

4.4.2 CTL immune pressure

As an intracellular viral protein, the T-cells of the adaptive immune system are primar-

ily responsible for recognizing p6 as a pathogenic protein by binding to epitopes compris-

ing a small number of contiguous amino acids. The LANL T-cell epitope maps list five
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Figure 4.5: Impact on the average energy of the viral population at the operating temper-
ature, U(Top=1), upon applying immune pressure to all possible {1,2,3,4,5}-epitope combi-
nations of the five known CTL epitopes in p6.

known CTL epitopes within p6: T23PSQKQEPI31, S25QKQEQIDK33, E29PKDREPL38,

K33ELYPLTSL41, and Y36PLASLRSLF45 [193]. Eight Th epitopes have been mapped to

within a region of 18 amino acids or less, but only one was confirmed as an exact epitope.

Motivated by interest in the design of CTL-based HIV vaccine immunogens [12, 191, 208],

we assessed whether the application of CTL immune pressure can also induce the phase

transition. To simulate CTL targeting at each single epitope, we recomputed the density

of states under the constraint that the virus was forbidden to contain all wild type amino

acids within the epitope [207]. We performed analogous calculations for all possible doubles,

triples, quads, and quints of epitopes.

As illustrated in figure 4.5, targeting of any single epitope only raises the average energy

of the viral population from U(Top=1)=13.5 to 14.2–15.2. Simultaneous targeting of all

five epitopes corresponds to U(Top=1)=16.8. All possible combinations of epitope targeting

result in Tcoex=1.17-1.19, indicating that CTL immune pressure at any known epitopes is

unable to induce the phase transition, and can only affect relatively modest increases in

population energy. Indeed, we find that it is not possible to induce the phase transition by
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targeting any contiguous group of nine amino acids within p6.

4.5 Conclusions

In summary, we have translated sequence databases of the HIV-1 clade B p6 protein into an

empirical fitness landscape quantifying the replicative capacity of the virus as a function of

its amino acid sequence. Using Wang-Landau sampling, we have identified a phase transition

in the sequence space of the p6 viral protein corresponding to an error catastrophe. Our

model predicts that the transition can be induced by elevating the operating temperature

beyond the coexistence temperature, Top > Tcoex, using drug therapies that increase the viral

mutation rate [102, 103]. Alternatively, the coexistence temperature may be suppressed

below the operating temperature, Tcoex < Top, by forcing particular pairs of mutations,

suggesting a means to cripple the HIV virus by applying mutational pressure at carefully

selected positions. In principle, this might be achieved by drugs or small molecule inhibitors

with localized binding sites on the p6 protein, similar to the anti-HIV drugs that bind

protease, integrase, and reverse transcriptase [209, 210]. In practice, development of such

molecules is a challenging problem in drug design. Interestingly, CTL immune pressure at

any combination of known epitopes in p6 cannot induce the transition, providing an empirical

rationalization for why the virus can exist in close proximity to the error catastrophe without

sustaining catastrophic fitness costs due to adaptive immune pressure.
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Chapter 5

Using Fitness Landscapes in Dynamic
Design

5.1 Introduction

A fitness landscape gives an organism’s replicative fitness as a function its amino acid se-

quence [1]. With a fitness landscape we can calculated the fitness for a large number of

sequences and determine where maximum and minimum are, allowing us to to rank the

effectiveness of different vaccine candidates [81]; however everything is static and the viral

population does not respond to the immune pressure. While these predictions could be very

good options for a vaccine, it is possible that the virus has escape pathways from a partic-

ular immune response. It is these escapes that have made it difficult to develop vaccines

and drugs for HCV. In order to address this problem we need to also explicitly model the

dynamics of the host-pathogen interaction under the action of the vaccine.

Mathematical models of evolution have been studied for nearly a century with both

simple and complex landscapes [211]. Despite this long history these models continue to be

useful. For example Tripathi et al. used evolutionary dynamics on a simple fitness landscape

to explore the viability of treating HIV by triggering the error catastrophic with mutagenic

drugs, in addition to elucidating an additional evolutionary benefit of recombination [82].

Barton et al. were the first to simulate viral dynamics on a detailed empirical fitness land-

scape. They showed that with simple viral dynamics and a constant bias to the landscape

(representing immune pressure) they could predict what escape mutation arose in a patient,

Most of this chapter is an excerpt from a paper currently under preparation: G. R. Hart and A. L.
Ferguson ”Evolutionary Dynamics Over an Empirical Fitness Landscape for Improved Vaccine Design”
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the order the mutations arose in, and the relative time between them [212]. In the approach

presented in this chapter, we simulate viral evolution on the fitness landscape which is bi-

ased in response to immune pressure, as they do, but we also allow for the immune system

to change in response to the evolving viral population. We begin by testing our model

by simulating infection in different individuals and comparing it to the actual infections in

those individuals. Using this to establish the validity of our model we go on to show how

this model can be used to test different immunogen candidates for a vaccine for a specific

individual. Finally we compare this dynamic design process to the static one we presented

in chapter 3. Full details of the determination and validation of this landscape from clinical

sequence databases is presented therein.

5.2 Method

5.2.1 Fitness landscape

We employed the fitness landscape for the hepatitis C virus (HCV) RNA-dependent RNA

polymerase (protein NS5B) determined from clinical sequence data using the approach de-

scribed in chapter 3.

5.2.2 Viral dynamics

The viral side of the dynamics are modeled using Fisher-Wright type dynamics [213, 214].

The algorithm proceeds as follows. Each of the N infected cell produces p free virus particles.

The replication process is not prefect, but is subject to a mutation rate µ. For each of the

pN free virus particles we specify the intrinsic fitness, f . We also calculate a penalty to

fitness, S, based on the sequences susceptibility to immune pressure (see section 5.2.3).

With both the intrinsic fitness and the immune susceptibility we can calculate the effective

fitness, F = f/S. Using the effective fitness as a weight we randomly select N free virus
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particles to infect the next generation of cells. Once these N sequences are selected the

T-cell dynamics are then updated to reflect their response to the changing viral population

(see section 5.2.3), and then the iterative uptade process is repeated.

We can find measurements of the mutation rate, µ ≈ 1.2× 10−4, from the literature [31].

In additional we tested our model over a range of mutations (10−5 ≤ µ ≤ 101) and showed it

to be robust around the measured value (10−5 ≤ µ ≤ 10−3). The number of progeny, p ≈ 150

virons/cell/day, can also be gleaned from experiments [31]. We showed that above a certain

threshold (p ≈ 5) our dynamics do not change, allowing us to accelerate our simulation

without comprising accuracy by using a smaller value of p = 10. The effective population

size, N , is not readily found from experiment. We tested this value over several order of

magnitude (103 ≤ N ≤ 105) finding a robust range to run in, N = 5× 104.

5.2.3 Immune dynamics

To model the dynamics of the T-cells we use the ODEs listed from ref. [108], except rather

than having an equation for the number of infected cells this number remains fixed (see

section 5.2.2), but the susceptibility of the infected cells to the T-cells changes. The equations

governing the T-cell dynamics are

dNi

dt
=− aNi

∑
{k}

χikIk + bNi − eNi + w (5.1)

dE1
i

dt
=(aNi + a′Mi)

∑
{k}

χikIk − rE1
i − dE1

i − gE1
i (5.2)

dEn
i

dt
=− rEn

i + 2rEn−1
i − dEn

i − gEn
i n = 2...ND − 1 (5.3)

dEND
i

dt
=2rEND−1

i − d′END
i − gEND

i (5.4)

dMi

dt
=a′Mi

∑
{k}

χikIk − hMi + g

ND∑
n=1

En
i . (5.5)

63



Here Ni is the number of naive cells targeting epitope i, En
i is the number of effector cells

of generation n, and Mi is the memory cells. The number cells infected with strain k is Ik.

Using tools from the Immune Epitope Database ([215]) we can calculate the susceptibility

of strain k to immune cells targeting epitope i, χik that provides a numerical estimate of the

affinity between each epitope and T-cell. As mentioned above the total number of infected

cells is fixed, but as mutations arise creating different strains, the strength of the immune

pressure can decrease as the effective number of infected cells,
∑
{k}
χikIk, falls.

These dynamics feed back into the viral dynamics through a penalty to the fitness rep-

resenting T-cells recognition that modulates the intrinsic fitness of a particular viral strain.

For viral strain k, the fitness penalty incurred due to recognition, summed over all ND gen-

erations of effector cells for all T-cell types is Sk = exp(2h̄ ∗
∑

i χik
ND∑
n=1

En
i ), where h̄ is the

average cost for a single mutation in the protein.

The values for all parameters in the model were extracted from experimental studies

conducted in refs. [216–222] and are listed in table 5.1.

Symbol Parameter Value Units

a Naive cell activation 10−7 cell−1day−1

a’ Memory cell activation 10−6 cell−1day−1

b Naive cell replication rate 10−4 day−1

d Effector cell death rate 0.2 day−1

d’ Terminal effector cell death rate 3 day−1

r Effector cell replication rate 6 day−1

e Naive cell death rate 3× 10−4 day−1

g Effector cell to memory cell rate 0.03 day−1

h Memory cell death rate 0.03 day−1

w Naive cell birth rate 0.1 cells day−1

ND Effector cell division limit 9

Table 5.1: Parameters implemented in the model of T-cell dynamics.

Due to small copy numbers of T-cells, stochastic effects are expected to be important in

governing the system dynamics. To explicitly expose the role of stochasticity, we integrate

the coupled T-cell ODEs both deterministically using a 4th order Runge-Kutta algorithm,

and also stochastically using the Gillespie algorithm [223]. For every simulation we run it
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once using the deterministic integration and 99 times with the stochastic integration and

calculate the mean and standard deviation.

5.2.4 Likelihood calculations

To test the predictions of our model, we compare its predictions for the infection time course

against longitudinal sequencing data, tracking the viral load within each host as a function

of time. To make this comparison quantitative, we compute the likelihood of observing the

specific mutational time courses observed in the patient given the parameters of our model.

We begin by writing the likelihood of the whole time course as the product of the likelihoods

of seeing the mutations at each time point:

P ({nti}|{pti}) =
∏
t

Pt({ni}t|{pi}t), (5.6)

where nti represents the number of sequences at time t with mutation i, pti is the model prob-

ability of see mutation i at time t, {ni}1 = {n1
i } making {nti} = { {ni}1, {ni}2, . . . {ni}tmax },

and likewise {pi}1 = {p1i } making {pti} = { {pi}1, {pi}2, . . . {pi}tmax }. We can write the

likelihood of the observed mutations {ni}t at time t as

Pt({ni}t|{pi}t) =
(
∑

i n
t
i)!∏

i n
t
i!

∏
i

(
pti
)nti , (5.7)

where the prefactor is a multinomial coefficient that accounts for the different permutations

for the mutational pattern.

To estimate the statistical significance of our model’s ability to predict mutational path-

ways we calculate p-values for the calculated likelihood by generating 50,000 likelihoods using

random sets of parameters. Additionally we calculated the maximum possible likelihood for

comparison with our model. The maximum likelihood occurs when the model parameters

are equal to the frequency data: pti = nti/
∑

j n
t
j = nti/N

t
T . This can be seen by taking the
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derivative of the likelihood with respect to pti and setting it to zero. Note that
∑

i p
t
i = 1,

so one of the parameters, arbitrarily we chose the last one ptN , can be written in terms of

the others, ptN = 1 −
∑N−1

i pti. For ease of mathematical manipulation, we maximize the

log-likelihood:

∂

∂pti
log(P t({nti}|{pti})) =

∂

∂pti

∑
t

(log(
(
∑N

j n
t
j)!∏N

j n
t
j!

) + ntN log(1−
N−1∑
j

ptj) +
N−1∑
j

ntj log(ptj))

(5.8)

=
∑
t

nti
pti
− nN

1−
∑

j p
t
j

. (5.9)

Now substituting pti = nti/N
t
T in

∑
t

ntiN
t
T

nti
− nNN

t
T

N t
T −

∑
j n

t
j

=
∑
t

(N t
T −

∑
j n

t
j)n

t
iN

t
T − ntinNN t

T

nti(N
t
T −

∑
j n

t
j)

(5.10)

∑
t

ntiN
t
T
2 − ntiN t

TN
t
T

nti(N
t
T −

∑
j n

t
j)

=0 (5.11)

For most of the patients the sequences where taken in a traditional manner and nti is

readily defined. However in the case of patients for whom longitudinal sequencing data was

reported as relative prevalences and the absolute number of sequences is not available. To

handle these situations, we set the total number of counts for these patients to be commen-

surate with the other patients in the corpus and verified that results were not sensitive to

variations over 10-fold changes in this value.

5.3 Results

We first validate our dynamic model in comparisons to longitudinal sequencing data taken

from infected hosts. We then proceed to use the validated model to rationally design HCV

vaccines predicted to maximally suppress viral fitness.
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5.3.1 Validation

To validate our dynamic model we simulate the course of infection in seven individuals

who have participated in various clinical studies [3, 6, 224]. These simulations were started

from a uniform population initialized with the first sequence taken from the patient, except

for patient (BR554) for whom the infecting sequence was know. We allowed any immune

response against known epitopes consistent with the patients HLA haplotypes, except for

one patient (P03 32) who had a measured response against an epitope not consistent with

his HLA type. For this patient we allowed this epitope to be targeted. We used the tools

from the immune epitope database [215] to estimate binding affinities between this epitope

and the patient’s HLA alleles. We assumed the epitope was restricted by the HLA allele

with the strongest binding affinity.

In comparing our model to the actual sequence data of the patients we focus on the

sites where a mutation arose in the patient or reached a frequency of 50% or more in our

model population. For these positions we calculate the likelihood of our model producing

the patient’s time course, the p-value, and the maximum possible likelihood to provide a

sense of scale (see section 5.2.4). We find that for most sites for most of the patients we

attain a relatively high likelihood that attains statistical significance (see table 5.2). Only for

patient P03 32 do our results not reach statisitcal significance. However, the reported T-cell

responses against the virus launched by this host are inconsistent with the assigned immune

genotype (i.e., haplotype), suggesting that the patient was immunologically mischaracter-

ized. These results provide strong support for the validity of our model in predicting the

dynamical evolution of the host-pathogen dynamics.

5.3.2 Tailoring vaccines

Having validated our dynamic immune model, we employ the model to rationally design

vaccines for patient 0684MX. Contrary to the vaccine design procedure presented in chap-
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Patient Mean likelihood Max likelihood p value

023 0.75 0.80 < 10−16

0684MX 0.35 0.94 < 10−16

1086MX 0.36 0.85 < 10−16

BR111 0.47 1.00 2.3−6

BR554 0.49 1.00 < 10−16

M003 0.11 0.40 7.7−8

P03 32 9.5e-4 1.00 0.86

Table 5.2: Mean likelihood, maximum likelihood, and p-value for the observed longitudinal
sequencing profile observed in each of the seven patients considered given the parameters of
our dynamical model.

ter 3, this design process explicitly incorporates the coupled host-pathogen dynamics and

is expected to present a more powerful and reliable tool for vaccine design. We start by

generating a list of T-cell epitope based vaccine candidates. We limit ourselves to immuno-

gens that have at most one epitope restricted by each of the individual HLA alleles (A*02

and B*27, each restricting 3 epitopes in NS5B) to reflect the immunodominance profile of

the host [12, 51, 52]. There are 3 single A*02 epitope immunogens, 3 single B*27 epitope

immunogens, and 9 immunognes with an A*02 epitope with a B*27 epitope, giving 15 im-

munogens that could be used in a vaccine of this type. Next we simulate the course of

infection in the individual having had each vaccine. Vaccination is represented by seeding

the simulation with a preexisting pool of memory cells against the epitopes in the vaccine.

To evaluate the effectiveness of the vaccines we will look at two properties of the time

course: (i) the maximum fitness penalty, and (ii) the length of time for which the fitness

penalty is sustained (figure 5.1). Since our viral dynamics are based on a fixed population

size model (see section 5.2.2) the viral population always survives and in a specific individual

will eventually reach the same equilibrium fitness. Thus the depth of the initial fitness drop

is a proxy for the likelihood of viral clearance and the width of the drop indicates whether

different vaccines control the viral load longer than others. This length of control is one of

the main things missing in the static vaccine design process.

We present the results of our vaccine design procedure in figure 5.2. Of the 15 immuno-
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Figure 5.1: The time course for the average fitness of the viral population in patient 0684MX
with no vaccination. Since our model uses a fixed population size the virus can never be
cleared and will always find the same equilibrium fitness on long time scales. Accordingly,
we look at the depth of the fitness dip and its full width half maximum value to estimate
how strongly the virus is repressed and for how long. The solid line represents the mean
of the 99 simulations employing the Gillespie algorithm to integrate the T-cell dynamics
along with the associated standard deviations. The dashed line represents the results of the
deterministic numerical integration. The Gillespie results explicitly account for stochastic
effects arising from finite populations of T-cells.

gens 1 was worse than no vaccination in both dimensions (fitness depression and length of

depression), 5 were worse in one dimension (time), 2 were better in one dimension, and 7

where better in both dimensions. The prediction of a vaccine that is worse than no vaccine

is unexpected. A review of the time course of the T-cells for the unvaccinated and bad

vaccination simulations reveal that priming against epitopes A*02 GLQDCTMLV and B*27

GRAAICGKY suppresses the respond against A*02 ALYDVVTKL and B*27 ARMILMTHF

as well as delaying the response against A*02 RLIVFPDLGV. We will see below that the
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Figure 5.2: The black x’s represent the 16 viral infections (15 different vaccines and no
vaccines) in the space of maximum fitness depression and length of depression relative to
no vaccine. The green circle indicates no vaccine. The red circles indicate the three Pareto
optimal vaccines. The figure is divided into four quadrants. The bottom right quadrant
represents vaccines that are worse than no vaccine. The top left represents vaccines that are
better than no vaccine. The bottom left and top right represent vaccine that are better in
one dimension but not the other and so may or may not be better than no vaccine.

suppressed responses are found in the optimal immunogens. This behavior is reminiscent

of the ”original antigenic sin” phenomenon discussed in the influenza literature [225, 226].

Employing a Pareto analysis over the 15 vaccines, we identified three Pareto optimal vaccines

of which two were only better than no vaccine in one deminsion, the last one was better in

both dimensions. The latter vaccine candidate – containing A*02 RLIVFPDLGV and B*27

ARMILMTHF – represents the optimal vaccine candidate for this patient designed using

our approach.

Comparing our dynamic vaccine design procedure to the optimal vaccine for patient
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0684MX predicted by the static design protocol detailed in chapter 3, we find that they

do not predict the same optimal immunogens. While the exact composite of these optimal

immunogens are different we observe that there are similarities. Both methods predict that

optimal immunogens will contain either A*02 ALYDVVTKL or B*27 ARMILMTHF (see

table 5.3). Therefore, as expected, the dynamic design process is not producing entirely new

predictions, but adjustments or corrections to the predictions of the static design process.

Epitopes Static optimal Dynamic optimal

A*02 ALYDVVTKL
A*02 GLQDCTMLV Yes
A*02 RLIVFPDLGV
B*27 ARHTPVNSW
B*27 ARMILMTHF Yes
B*27 GRAAICGKY

A*02 ALYDVVTKL, B*27 ARHTPVNSW Yes
A*02 ALYDVVTKL, B*27 ARMILMTHF Yes
A*02 ALYDVVTKL, B*27 GRAAICGKY
A*02 GLQDCTMLV, B*27 ARHTPVNSW
A*02 GLQDCTMLV, B*27 ARMILMTHF
A*02 GLQDCTMLV, B*27 GRAAICGKY
A*02 RLIVFPDLGV, B*27 ARHTPVNSW
A*02 RLIVFPDLGV , B*27 ARMILMTHF Yes
A*02 RLIVFPDLGV, B*27 GRAAICGKY

Table 5.3: The 15 possible T-cell immunogens using no more than one epitope for each HLA.

5.4 Conclusion

In this work we were able to build an immune simulator coupled to an empirical fitness

landscape. This coupling allowed for the simulation of the viral population evolving in the

presence of the host’s immune system. This allows us to explore viral responses to immune

pressure, identify potential escape pathways, and perform dynamical vaccine design.

We showed that our model can largely reproduce the mutational patterns that arise in a

patient over the course of an infection. This is a strong indicator that our simple model is

capturing the important feature of the host-viral interactions. With this confidence we can
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gain insight into the specific escape ways the virus uses to evade immune (or drug) pressure

and design treatments that either are compromised by the pathways or block them.

To this end, we present a simple example of how this dynamic model can be used in the

design of vaccines. By designing optimal vaccine candidates for a single individual using

both the fitness landscape alone and dynamics over the fitness landscape, we are able to

easily see that the two methods predict different things. This indicates that while there are

some epitopes where mutations introduce large fitness penalties, the viral population is able

to quickly recover for this. It is possible with our model to look at the specific compensatory

mutations that arise; however, we are instead turning our focus onto developing a vaccine

for a general population instead of one person.

We plan on predicting optimal vaccine candidates for whole populations by simulating

vaccination in many different individuals (different genetic backgrounds). Then for each

individual we can calculate the two dimension score for the vaccine (suppression strength

and duration). Finally, we can aggregate the individual scores weighted by the frequency

of the genetic background as we do for the static vaccine design (see chapter 3). We can

optimize on the two criterion or add addition ones as needed (such as immunogen size).
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Chapter 6

Conclusion and Future Work

This thesis concerns the data-driven construction of empirical fitness landscapes and their

use in the design of vaccines and other viral treatment. The development of vaccines is one

of the great successes of medicine. Vaccines have improved the quality of life and lengthened

life expectancy. Although the principles behind vaccines are well understood, many of the

world’s most taxing diseases continue to evade efforts to develop a effective vaccine. The

use of an computational vaccine design platform based on empirical fitness landscapes can

be used to accelerate the vaccine development process by offering a rapid rational design

method for vaccine candidates.

In chapter 2 we discuss fitness landscapes. A fitness landscape for a virus [1, 12] can be

conceptualized as a topographical map in which the location of a point on the landscape

specifies the amino acid sequence of the virus, and the elevation of the landscape at that

point specifies its replicative capacity. We discuss a little of the history of fitness landscapes

and their importance in mathematical models of viral evolution. We discuss the basic types

of theoretical fitness landscapes and move on to efforts to determine them experimentally or

otherwise reconstruct them from data. After this discussion of the efforts of others we present

the model we are using as well as its strengths and weaknesses. Finally we demonstrate how

our model works by creating a fitness landscapes for toy protein with two amino-acids, which

allows the landscapes to be viewable in 3 dimensions.

In chapter 3 we construct a fitness landscape for HCV protein NS5B from clinical se-

quences. We then compared our fitness landscape with 5 different types of experimental

and clinical data. Our model had good agreement with measured in vitro fitness and could
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predict or explain viral behavior such as which positions in a protein mutate to escape im-

mune pressures. With the validity of the landscape confirmed we than demonstrated how

the fitness landscape can be used in the vaccine design process. We generated a list 16.8

million vaccine candidates based on the targets of killer T-cells in NS5B and then ranked

them all based on the average fitness cost to evade immune pressure and how much of the

human population could respond to the vaccine. This ranking revealed 86 optimal vaccine

candidates, reducing the experimental search space by 5 orders of magnitude.

In chapter 4 we demonstrated a precise mathematical correspondence between the viral

error catastrophe and a first order phase transition in the sequence space of the virus. It

has been suggested that rapidly mutating viruses may be susceptible to treatment with

mutagenic drugs to induce an error catastrophe, where the mutation rate raises to the point

where not enough genetic material is passed from one generation to another to propagate

the population. Using a fitness landscape for a small HIV protein (p6) we showed that the

protein resides near the error catastrophe, and we showed that the error catastrophe could

be triggered by targeting several pairs of amino acids, opening up the possibility of small

molecule inhibitors or other drugs designed to induce the error catastrophe. Furthermore

we showed that no known killer T-cell targets in the the protein could induce the effect

providing a possible rationalization for why HIV may reside so close to the error catastrophe

with impunity.

In chapter 5 we discussed coupling our fitness landscapes with population dynamics

models. This allowed us to create an immune simulator in which the fitness landscape

represented the “playing field” that the virus evolves over. We showed that our model

does a good job of reproducing the mutational pathways the viral population observed in

longitudinal sequencing data of HCV infected hosts. We further showed that with our

dynamics model we can simulate vaccination and thus screen candidates. This will allow

us to follow a similar design procedure to that introduced in chapter 3, but now explicitly

incorporating information on the host-pathogen dynamics.
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In continuing work on HCV, I have determined fitness landscapes for proteins such has

NS3 and NS5A (the other targets of antiviral treatment). For some of the proteins I have

inferred landscapes for additional genotypes as well and have constructed one multi-genotype

landscape. The next step is to develop collaborations with experimentalists and clinicians to

test our predictions. I have also begun preliminary work on other viruses, fitting landscapes

for all of influenza A’s proteins and have been working on both T-cell and B-cell vaccine

design. To fully tackle a non-chronic disease like influenza our methodology needs to extend

to handle antibody targets. T-cell epitopes are well defined small continuous strings of amino

acids making it straightforward to predict a mutation effecting them and thus calculate the

fitness cost of such a mutation. Furthermore, as mentioned in chapter 5, tools have been

developed to predict the effect on binding affinity and recognition of mutations within an

T-cell epitopes [215]. Antibody epitopes on the other hand are dependent on conformation.

This means the amino acids involved are not necessarily next to one another in the sequence.

Furthermore amino acids not actually binding to the antibody can effect the conformation

and thus it is hard to define the epitope. In the future I hope to learn more about the

available tools testing antibodies (supplementing them with molecule dynamics if necessary)

and add antibodies to our design process.

In addition to fully utilizing our vaccine design process there are still some open questions

about our model for fitness landscapes. One that has been of particular interest to me is

the relationship between the fitness of a sequence, f( ~A) and its prevalence in the popula-

tion, P ( ~A). As mentioned in chapter 2 our model actually finds the prevalence landscape.

However under certain conditions it has been shown that the rank ordering for prevalences

and fitnesses are preserved [106, 109]. We have shown empirically that our model is a strong

predictor in vitro fitness [12, 81, 111]. However, Niko Beerenwinkel and co-workers have

showed that using the quasispecies model the rank ordering does not have to be preserved

when going from prevalence to fitness or visa versa [2]. This opens up the questions: what

determines if prevalence is a good proxy for fitness; will it always be a good proxy for biolog-
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ically relevant landscapes; and can we improve our prediction by more carefully considering

the relationship between prevalence and fitness? I am currently working on these questions,

and I am developing a way to transform our prevalence landscape into a fitness landscape

in a restricted portion of sequence space.

One of the other questions that lingers in my mind: what landscape structure is necessary

for a phase transition to exist? We showed in chapter 4 that the HIV p6 protein is on the

edge of a phase transition, but we also showed a phase transition is not inherent to the

model. This leaves open the question of what features of the viral fitness landscape dictate

whether there is a phase transition.
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Appendix A

Mathematical Details

A.1 Maximum entropy

First we will show that the maximum entropy model that reproduces the observed frequencies

of animo acids and pairs of amino acids is the Potts model. The Shannon entropy is

S = −
qm∑
k=1

P (~zk) logP (~zk), (A.1)

where the protein is m amino acids long and q = 21 if we include all natural amino acids

and an unknown. The entropy is constrained by the normalization condition

qm∑
k=1

P (~zk) = 1, (A.2)

and reproducing the amino acid frequencies

P obs
i (p) =

qm∑
k=1

σpziP (~zk) (A.3)

P obs
ij (p, r) =

qm∑
k=1

σpziσrzjP (~zk). (A.4)
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These constraints make maximizing the entropy a Lagrangian maximization problem

L =−
qm∑
k=1

P (~zk) logP (~zk) (A.5)

+α

(
qm∑
k=1

P (~zk)− 1

)
(A.6)

+
m∑
i=1

q∑
p=1

[
hi(p)

(
P obs
i (p)−

qm∑
k=1

σpziP (~zk)

)]
(A.7)

+
m∑
i=1

m∑
j=i+1

q∑
p=1

q∑
r=1

[
Jij(p, r)

(
P obs
ij (p, r)−

qm∑
k=1

σpziσrzjP (~zk)

)]
, (A.8)

where α, {hi}, and {Jij} are the Lagrangian multipliers.

We proceed by taking all the partial derivatives and simultaneously setting them to zero,

∂L

∂P (~zk)
= 0 = − logP (~k)− 1 + α−

m∑
i=1

hi(zi)−
m∑
i=1

m∑
j=i+1

Jij(zi, zj). (A.9)

Solving for P (~zk)

logP (~zk) =− 1 + α−
m∑
i=1

hi(zi)−
m∑
i=1

m∑
j=i+1

Jij(zi, zj) (A.10)

P (~zk) =e−1+αe−(
∑m
i=1 hi(zi)+

∑m
i=1

∑m
j=i+1 Jij(zi,zj)). (A.11)

The factor of e−1+α is identical for all the P (~zk), it is in fact the normalization factor which

we call Z

Z =

qm∑
k=1

P (~zk) (A.12)

=

qm∑
k=1

e−(
∑m
i=1 hi(zi)+

∑m
i=1

∑m
j=i+1 Jij(zi,zj)). (A.13)
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Therefore

P (~zk) =
e−(

∑m
i=1 hi(zi)+

∑m
i=1

∑m
j=i+1 Jij(zi,zj))∑qm

k=1 e
−(

∑m
i=1 hi(zi)+

∑m
i=1

∑m
j=i+1 Jij(zi,zj))

(A.14)

=
1

Z
e−H(~z), (A.15)

if we call Z the partition function, H the Hamiltonian, {hi} the external fields, and {Jij}

the interaction couplings, we have an infinite range Potts model.

A.2 Maximum likelihood model

We now show that adjusting the model parameters {hi, Jij} to reproduce the observed fre-

quency of amino acids and amino acid pairs ({P obs
i (p), P obs

ij (p, r)}), not only maximizes the

entropy, but also result in a maximum likelihood estimate. Given a multiple sequence align-

ment (MSA see the beginning of section 2.5.2) containing K sequences, let the observed

probability of a particular sequence ~zk be P obs(~zk) and the model prediction of that state be

P (~zk). This gives us

L(model|data) = P (data|model)P (model) (A.16)

where P (model) is a Bayesian prior or alternatively it can be thought of as a regularization

factor. For this factor we use
∏

i e
−βλi‖θ‖2 , where λi is the regularization strength, θi rep-

resents the model parameters, and β = 1
kT

the inverse temperature common in statistical

physics. Setting λi = 0, represents a uniform prior. Going forward we will use D instead

of writing out data and ~θ in place of model representing the vector of adjustable model

parameters, {hi, Jij}.
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Now, assuming independent and identically distributed observation we have

L(~θ|D) =P (D|~θ)P (~θ) (A.17)

=

∏
{~z}

P (~z)P
obs(~z)K

[∏
i

e−βλ‖θi‖2

]
(A.18)

logL(~θ|D) =
∑
{~z}

KP obs(~z) logP (~z)−
∑
i

βλi‖θi‖2 (A.19)

=K
∑
{~z}

P obs(~z) logP (~z)−
∑
i

βλi‖θi‖2 (A.20)

1

K
logL(~θ|D) =

∑
{~z}

P obs(~z) logP (~z)−
∑
i

1

K
βλi‖θi‖2 (A.21)

=
∑
{~z}

[
P obs(~z) logP obs(~z)− P obs(~z) log

P obs(~z)

P (~z)

]
−
∑
i

1

K
βλi‖θi‖2 (A.22)

=− Sobs −DKL(P obs||P )−
∑
i

1

K
βλi‖θi‖2 (A.23)

=− Sobs −

[
DKL(P obs||P ) +

∑
i

1

K
βλi‖θi‖2

]
(A.24)

=− Sobs −DR
KL (A.25)

Here, Sobs is the entropy of the MSA, DKL is the Kullback-Leibler divergence between

the observed and model probability distributions, and DR
KL is the regularized KL divergence.

Maximizing this log-likelihood is the same as minimizing DR
KL. We proceed by taking the

partial derivatives of DR
KL with respect to hpi (where hpi is equivalent to hi(p)) and set them
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to zero,

∂DR
KL

∂hpi
=

∂

∂hpi

∑
{~z}

[
P obs(~z) logP obs(~z)− P obs(~z) logP obs(~z)

]
+

∂

∂hpi

[∑
i

1

K
βλi‖θi‖2

]
(A.26)

=
∂

∂hpi

∑
{~z}

[
−P obs(~z) log

e−βH(~z)

Z

]
+
β

K
2hpiλ

p
i (A.27)

=
∂

∂hpi

∑
{~z}

[
βH(~z)P obs(~z) + logZP obs(~z)

]
+
β

K
2hpiλ

p
i (A.28)

=β
∑
{~z}

P obs(~z)
∂

∂hpi
H(~z) +

∂

∂hpi
logZ

∑
{~z}

P obs(~z) +
β

K
2hpiλ

p
i (A.29)

=β
∑
{~z}

P obs(~z)
∂

∂hpi
H(~z) +

1

Z

∂

∂hpi
Z +

β

K
2hpiλ

p
i . (A.30)

In going from equation A.26 to A.27 we used the fact that P obs(~z) logP obs(~z) is independent

of hpi and in going from equation A.29 to A.30 we used the fact that
∑
{~z}
P obs(~z) = 1. Now we

need the derivatives of the partition function and Hamiltonian. First the partition function

Z =
∑
{~z}

e−βH(~z) =
∑
{~z}

e
−β

[∑
i

∑
p
hpi σzip+

1
2

∑
i

∑
j 6=i

∑
p

∑
r
Jprij σzipσzjr

]
(A.31)

=
∑
{~z}

e
−β

[∑
p
hpkσzkp+

∑
j 6=k

∑
p

∑
r
Jprkj σzkpσzjr

]
e
−β

[∑
i 6=k

∑
p
hpi σzip+

1
2

∑
i

∑
j 6=i,j 6=k

∑
p

∑
r
Jprij σzipσzjr

]
(A.32)

∂Z

∂hsk
=− β

∑
{~z}

σzksE
−βH(~z) (A.33)

=− βZ(zk = s) (A.34)

where Z(zk = s) is a partial partition function, summing over only sequences with zk = s.
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And now for the Hamiltonian,

∂H(~z)

∂hsk
=

∂

∂hsk

[∑
p

hpkσzkp +
∑
j 6=k

∑
p

∑
r

Jprkjσzkpσzjr +
1

2

∑
i

∑
j 6=i,j 6=k

∑
p

∑
r

Jprij σzipσzjr

]
(A.35)

=σzks (A.36)

These equations (A.34 and A.36) are now substituted back into equation A.30,

∂DR
KL

∂hpi
=β
∑
{~z}

P obs(~z)σzip − β
1

Z
Z(zi = p) +

β

K
2hpiλ

p
i (A.37)

=β

[
P obs
1 (zi = p)− Pi(zi = p) +

1

K
2(hpi )λ

p
i

]
(A.38)

(A.39)

Now we proceed in a similar fashion, taking partial derivatives with respect to {Jprij }:

∂DR
KL

∂Jprij
=β
∑
{~z}

P obs(~z)
∂

∂Jprij
H(~z) +

1

Z

∂

∂Jprij
H(~z) +

β

K
2(Jprij )λprij . (A.40)

Now for Z and H again:

Z =
∑
{~z}

e−βH(~z) =
∑
{~z}

e
−β

[∑
i

∑
p
hpi σzip+

1
2

∑
i

∑
j 6=i

∑
p

∑
r
Jprij σzipσzjr

]
(A.41)

Z =
∑
{~z}

e
−β

[∑
p
hpkσzkp+

∑
j 6=k,j 6=l

∑
p

∑
r
Jprkj σzkpσzjr

]
e
−β

[∑
p
hpl σzlp+

∑
j 6=k,j 6=l

∑
p

∑
r
Jprlj σzlpσzjr

]

e
−β

[∑
p

∑
r
Jprkl σzkpσzlr

]
e
−β

[ ∑
i 6=k,i6=l

∑
p
hpi σzip+

1
2

∑
i

∑
j 6=i,j 6=k,j 6=l

∑
p

∑
r
Jprij σzipσzjr

] (A.42)
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∂Z

∂Jstkl
=− β

∑
{~z}

σzksσzlte
−βH(~z) = −βZ(zk = s, zl = t) (A.43)

∂H(~z)

∂Jstkl
=σzksσzlt. (A.44)

Substituting back,

∂DR
KL

∂Jprij
=β
∑
{~z}

P obs(~z)σzksσzlt + β
1

Z
Z(zi = p, zj = r) +

β

K
2(Jprij )λprij (A.45)

=β

[
P obs
2 (zi = p, zj = r) + P2(zi = p, zj = r) +

β

K
2(Jprij )λprij

]
(A.46)

Thus, DR
KL is minimized, and log likelihood maximized, when

P1(zi = p) =P obs
1 (zi = p) +

1

K
2(hpi )λ

p
i (A.47)

P2(zi = p, zj = q) =P obs
2 (zi = p, zj = q) +

β

K
2(Jprij )λprij . (A.48)

Taking the regularization to zero, λpi = λprij = 0, we see that the maximum likelihood estimate

of the parameters are the same as the parameter set that produces the observed one and

two amino acid frequencies. Thus we can use Bayesian inference to estimate the model

parameters.

A.3 Regularization

In the above section the mathematical details were worked out with a non-uniform prior.

This prior can also be thought of as a regularization. We use two forms of regularization

which we refer to as offline and online regularization. The offline or a priori regulariza-

tion addresses the issue of noisy or missing data and the online or Bayesian regularization

addresses issues of numeric stability in the algorithm.

The size of sequence space (qm) is very large much larger than the number of sequences
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K that have been sampled. This means that there are many unobserved mutations and

pairs of mutations, leading to some P obs
i (zi) and P obs

ij (zi, zj) equaling zero. If the probability

of seeing these truly are zero than the corresponding parameters hi(zi) and Jij(zi, zj) need

to be infinite. This is where the offline regularization comes in, by adding a pseudo-count to

our observed or targeted probabilities. This means adding a (possibly non-integer) number

of fictitious observations of an amino acid (or pair of amino acids) within the MSA to

reflect the belief that the probability of observing this amino acid (or pair) in this position

is not precisely zero, but rather a low-probability event that is not observed within the

finite number of strains within the MSA. However many sequences are not viable and some

amino acids may not be observed even in arbitrarily large data sets. Therefore we adopt the

following middle ground. We assume that K is large enough to observe any single amino

acid that is viable, therefore we remove unobserved amino acids from our model (effective

setting the corresponding hi to infinity). We further assume that any single amino acid that

appears in the MSA could appear in a pair with any other amino acid in the MSA and use

pseudo-counts to assure non-zero Pij values.

These regularized target probabilities are the input for our fitting algorithm. The numer-

ical stability of this algorithm is improved by our second (online) regularization. Without

this regularization the algorithm can be slow to converge as often coupled groups of hi and

Jij elements exhibit uncontrolled growth (some positive, some negative) that taken together

have little effect on the predicted frequencies. This issue is addressed with the Gaussian

Bayes prior from the previous section. In the fitting algorithm this factor acts as a penalty

on model parameters that grow large, limiting the uncontrolled growth. This regularization

could also be viewed from a frequentist perspective as the addition of pseudo-counts.

When using pseudo-counts it is important to rebalance the target probabilities to assure
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they are normalized. This is done as follows,

N tar
1 =KP1(zi = p) = KP obs

1 (zi = p) + 2(hpi )λ
p
i (A.49)

=N obs
1 + 2(hpi )λ

p
i = Ñ obs

1 (A.50)

P̃1(zi = γ) =
Ñ obs

1 (zi = γ)∑
α

Ñ obs
1 (zi = α)

(A.51)

=
KP obs

1 (zi = γ) + 2(hγi )λ
γ
i∑

α

KP obs
1 (zi = α) + 2(hαi )λαi

(A.52)

=
P obs
1 (zi = γ) + 1

K
2(hγi )λ

γ
i∑

α

P obs
1 (zi = α) + 1

K
2(hαi )λαi

(A.53)

P̃ obs
1 (zi = γ)← P̃ obs

1 (zi = γ)∑
α

P̃ obs
1 (zi = α)

, (A.54)

assuming probabilities over residues, α, at each site, i, sum to unity by renormalizing the

elements but retaining relative proportion altered by pseudo-counts.

For P2, must assume that the marginals are consistent:

∃σ
∑
α

P obs
2 (zi = α, zj = σ) =P obs

1 (zj = σ) (A.55)

∃σ
∑
γ

P obs
2 (zi = γ, zj = α) =P obs

1 (zi = γ) (A.56)

Succinctly, we define a factor 1
rk

for each row k, and 1
cl

for each column l, of the P obs
2 (zi, zj)
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matrix which may be adjusted to ensue row and column normalization:

R−1PC−1 =


1
r1

1
r2

. . .



P obs
2 (zi = α1, zj = α′1) P obs

2 (zi = α1, zj = α′2) . . .

P obs
2 (zi = α2, zj = α′1) P obs

2 (zi = α2, zj = α′2) . . .

...
...

. . .




1
c1

1
c2

. . .


(A.57)

=


P obs2 (zi=α1,zj=α

′
1)

r1c1

P obs2 (zi=α1,zj=α
′
2)

r1c2
. . .

P obs2 (zi=α2,zj=α
′
1)

r2c1

P obs2 (zi=α2,zj=α
′
2)

r2c2
. . .

...
...

. . .

 . (A.58)

with this R−1PC−1~1 = P̃obs
1 (zi = α), a column vector of ones sums over rows of R−1PC−1

returning P̃obs
1 (zi = α) a column vector of site i marginals, normalized as per above. And

~1TR−1PC−1 = P̃obs
1 (zj = α′), a row vector of ones sums over columns of R−1PC−1 returning

P̃obs
1 (zj = α′) a row vector of site j marginals, normalized as per above.

This is a nonlinear optimization problem. We just iterate until converged:

~r =sum(P, 2) (A.59)

P←diag(
P1

r
)P (A.60)

~c =sum(P, 1) (A.61)

P←Pdiag(
P1

c
) (A.62)

A.4 Gauge fixing

The model we have describe here has a gauge invariance, to use this model we need a gauge

fixing scheme. As a reminder the probability assigned to a particular state ~x within the
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q-state Potts mode is:

P (~x) =
1

Z
exp

[
−β(

∑
i

hi(Xi) +
∑
j>i

Jij(Xi, Xj))

]
(A.63)

where Xi = {1 . . . q}.

The number of parameters =
[
Nq +

(
N
2

)
q2
]
, there is one h for each state (amino acid)

at each site and one J for each possible pairing of states at every pair of sites.

T =Nq +

(
N

2

)
q2 ← 1-body & 2-body marginals

−N ← 1-body normalization1

−
(
N

2

)
← 2-body normalization2

−
(
N

2

)
2(q − 1) ← 2-body to 1-body marginalization3 (A.64)

=N(q − 1) +

(
N

2

)
(q2 − 2(q − 1)− 1) (A.65)

=N(q − 1) +

(
N

2

)
(q2 − 2q + 1) (A.66)

=N(q − 1) +

(
N

2

)
(q − 1)2 (A.67)

We make the following observations regarding this calculation:

1.
q∑
p=1

P (Xi = p) = 1⇒ P (Xi = q) = 1−
q−1∑
p=1

P (Xi = p): one of the one-body marginals

at each site is not independent. There are N sites.

2.
q∑
p=1

q∑
r=1

P (Xi = p,Xj = r) = 1 ⇒ P (Xi = q,Xj = r) = 1 −
q∑
p=1

q−1∑
r=1

P (Xi = p,Xj =

r) +
q−1∑
p=1

P (Xi = p,Xj = q): one of the two-body marginals at each pair of sites is not

independent. There are
(
N
2

)
pairs of sites.

3. P (Xi = p) =
q∑
r=1

P (Xi = p,Xj = r): one-body marginals are specified by the two-body

marginals. q-such equations every ordered pair of sites this gives N(N − 1)q. But one such
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equation must be removed since it is known from the normalization of P (Xi) in 1. (i.e. only

(q − 1) such equation for every ordered pair) so we don’t recount one-body normalization.

This gives N(N − 1)(q − 1) =
(
N
2

)
2(q − 1)

Therefore, we have more parameters P = (Nq+
(
N
2

)
q2) than conditions T = (N(q− 1) +(

N
2

)
(q−1)2) and so we may fix some of the parameters to break the degeneracy of the model.

In effect, H is unchanged under certain shifts in h and J , it moves along a null space, or in

other words it has a gauge invariance.

Gauge invariance presents interpretability problems, since the same 1 and 2 site marginals

can be reproduced by altering contributions between local fields and couplings. (weight).

To fix our model we choose to pin to zero N h parameters and
(
N
2

)
2(q−1) J parameters.

1. Fix at each site: h(Xi = 1) = 0

2. Fix for each pair of sites: J(Xi = 1, Xj) = J(Xj, Xi = 1) = 0 for xj = {1 . . . q}.

This makes all couplings and external fields measured with respect to state 1 (the most

frequent amino acid at that position).
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We now show that this gauge fixing works for {hi}

Z =
∑

Aα={1...qα}

e−[
∑
i hi(Ai)+1/2

∑
i

∑
j 6=i Jij(Ai,Aj)] (A.68)

=
∑

Aα={1...qα}

e−[
∑
i hk(Ak)+

∑
j 6=k Jkj(Ak,Aj)]e−[

∑
i6=k hi(Ai)+1/2

∑
i 6=k

∑
j 6=i,j 6=k Jij(Ai,Aj)]

(A.69)

Z(Ak = ak) =
∑

Aα={1...qα},α 6=k

e−[
∑
i hk(Ak=ak)+

∑
j 6=k Jkj(Ak=ak,Aj)]e−[

∑
i 6=k hi(Ai)+1/2

∑
i6=k

∑
j 6=i,j 6=k Jij(Ai,Aj)]

(A.70)

=
∑

Aα={1...qα},α 6=k

e−[hk(Ak=ak)+
∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k) (A.71)

=e−hk(Ak=ak)
∑

Aα={1...qα},α 6=k

e−[
∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k) (A.72)

P (Ak = ak) =
Z(Ak = ak)

Z
=
e−hk(Ak=ak)

∑
Aα={1...qα},α 6=k e

−[
∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k)∑

Aα={1...qα} e
−hk(Ak=ak)e−[

∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k)

(A.73)

=
e−hk(Ak=ak)

∑
Aα={1...qα},α 6=k e

−[
∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k)

e−hk(Ak=ak)
∑

Aα={1...qα} e
−[hk(Ak)−hk(Ak=ak)]e−[

∑
j 6=k Jkj(Ak=ak,Aj)]P (~(A)k)

(A.74)

Therefore P (Ak = ak) is unchanged upon subtracting a constant from all members of the

vector ~hk = hk(Ak = 1) . . . hk(Ak = qk). Showing this for {Jij} is similar.

A.5 Newton step

Our algorithm for determining the parameters based on gradient descent. This gradient

decent takes the form of, ~P obs
1

~P obs
2

 =

~P1

~P2

+ J

∆~h

∆ ~J

 (A.75)
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where P1 and P2 are derived from the model and J is the Jacobian. We sample sequences

from the current model using Markov-chain Metropolis Monte-Carlo (MC), and from these

sequences calculate P1 and P2. By assuming that coupling is small, i.e. that each probability

only needs to be expanded in its “own” parameter, the Jacobian becomes diagonal and this

system simplifies to

P obs
i (p) =Pi(p) +

∂Pi(p)

∂hi(p)
∆hi(p) (A.76)

P obs
ij (p, r) =Pij(p, r) +

∂Pij(p, r)

∂Jij(p, r)
∆Jij(p, r). (A.77)

Thus the step is,

∆hi(p) =
P obs
i (p)− Pi(p)

∂Pi(p)
∂hi(p)

=
P obs
i (p)− Pi(p)

Pi(p)(Pi(p)− 1)
(A.78)

∆Jij(p, r) =
P obs
ij (p, r)− Pij(p, r)

∂Pij(p,r)

∂Jij(p,r)

=
P obs
ij (p, r)− Pij(p, r)

Pij(p, r)(Pij(p, r)− 1)
. (A.79)

In practice these steps are multiplied by a softening factor, γ < 1 to improve numeric

stability.

Now we will derive the derivatives used in equations A.81 and A.82,

Z =
∑

Aα={1...qα}

e−[
∑
i hi(Ai)+1/2

∑
i

∑
j 6=i Jij(Ai,Aj)] (A.80)

=
∑

Aα={1...qα}

e−[
∑
i hk(Ak)+

∑
j 6=k Jkj(Ak,Aj)]e−[

∑
i6=k hi(Ai)+1/2

∑
i 6=k

∑
j 6=i,j 6=k Jij(Ai,Aj)] (A.81)

=
∑

Aα={1...qα},α 6=k

 ∑
Aα={1...qk

e−[
∑
i hk(Ak)+

∑
j 6=k Jkj(Ak,Aj)]

 e−[
∑
i 6=k hi(Ai)+1/2

∑
i6=k

∑
j 6=i,j 6=k Jij(Ai,Aj)]

(A.82)
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Z(Ak = ak) =
∑

Aα={1...qα},α 6=k

e−[
∑
i hk(Ak=ak)+

∑
j 6=k Jkj(Ak=ak,Aj)]e−[

∑
i6=k hi(Ai)+1/2

∑
i 6=k

∑
j 6=i,j 6=k Jij(Ai,Aj)]

(A.83)

∂Z

∂hk(Ak = ak)
=− Z(Ak = ak) (A.84)

∂Z(Ak = ak)

∂hk(Ak = ak)
=− Z(Ak = ak) (A.85)

P (Ak = ak) =
Z(Ak = ak)

Z
(A.86)

∂P

∂hk(Ak = ak)
=

∂Z(Ak=ak)
∂hk(Ak=ak)

Z − ∂Z
∂hk(Ak=ak)

Z(Ak = ak)

Z2
(A.87)

=
−Z(Ak = ak)Z + Z(Ak = ak)

2

Z2
(A.88)

=− P (Ak = ak) + P (Ak = ak)
2 (A.89)

=P (Ak = ak)[P (Ak = ak)− 1]. (A.90)

The derivative for P2 is similar.

By assuming that there are no couplings between amino acids, Jij = 0, we can calculate

what the {hi} parameters would be under this independent site approximation to generate

an initial guess for iterative fitting procedure.

P (Ak = ak) =
e−βhk(Ak=ak)∑

Ak={1...k}
e−βhk(Ak

=
e−βhk(Ak=ak)

Zk
(A.91)

lnP (Ak = ak) =− βhk(Ak = ak)− lnZk (A.92)

hk(Ak = ak) =− 1

β
lnP (Ak = ak)−

1

β
lnZk (A.93)

hk(Ak = ak) =− 1

β
lnP (Ak = ak) + C (A.94)

Where C is an additive constant that will be eliminated by gauge fixing hk(Ak = ak)←

hk(Ak = ak)−h(Ak = 1). We initialize the {Jij} to zero. We observe that more sophisticated
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initialization procedures (e.g., mean field approximations, post-mean field approximations

such as solving the Thouless-Anderson-Palmer (TAP) equations [227] are also possible.
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Appendix B

Code

The code for inferring fittness landscapes can be found here: https://github.com/GregoryRHart/

Potts_fitting.git. It is a C++ code that can be run serially or compiled with OpenMP

to be run in parallel. There is also an option to compile with CUDA for GPU acceleration.

The C++ code and accompanying MATLAB scripts for the immune simulator can be

found here: https://github.com/GregoryRHart/Population_Dynamics.git. This code

can be run serially or compiled with OpenMP for parallelization.
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Appendix C

Addition Data and Figures From
Static Design

C.1 Average immune pressure estimate

It has previously been shown that the effects of host immune pressure on strain distribution

is averaged out if the MSA samples a genetically diverse host population [12, 106, 137]. In

other words, the fact that hosts with different haplotypes target very different regions of the

viral proteome means that if the number of sequences in the ensemble used to fit the model

are sufficiently numerous and drawn from hosts with diverse immunological haplotypes, no

single position in the viral proteome is subjected to a disproportionate mutational pressure

when averaged over the sequence ensemble. The sequences where collected in multiple lo-

cales in nine countries on three continents [168–170], and while the majority of patients

were Caucasian, there exists a strong representation of Africans as well as Hispanics, Asians,

and other ethnic groups. This geographic and ethnic diversity suggests that the MSA con-

tains sufficient genetic diversity to eliminate signatures of adaptive immunity. To quantify

this assertion we estimated the frequency with which each amino acid position in NS5B is

expected to be subject to immune pressure using the approach detailed in ref. [106]. We

compiled from the Immune Epitope Database (http://www.iedb.org) the 24 CTL NS5B

epitopes that were both exactly defined and the HLA association known [179], and deter-

mined the frequency with which each HLA occurs within the North American population as

a representative group (http://www.ncbi.nlm.nih.gov/projects/gv/mhc) [184]. Finally,

we estimated the probability that persons possessing these HLA types recognize and tar-

get the cognate CTL as the mean of the reported non-zero recognition frequencies of CTL
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epitopes across the HCV proteome [228]. We observe that this provides a conservative esti-

mate higher than any value reported for a NS5B epitope. Using these values, we estimated

no position within the NS5B protein to be targeted by more than 8% of the population.

This percentage is substantially lower than the values of 17% and 23% estimated for the

HIV-1 proteins p17 and p24, for which we have previously computed fitness landscapes and

validated in extensive comparisons against experimental and clinical data to demonstrate

that they are not contaminated with signatures of adaptive immune pressure [12, 106]. In

sum, our targeting frequency estimate for NS5B, prior empirical, numerical, and theoretical

studies [106], and direct comparisons against clinical data and experimental measurements

described in chapter 3, all provide support that our inferred NS5B fitness landscape does

not contain footprints of adaptive immunity.

C.2 Model augmentation

The Potts model fitted to the MSA data detailed in chapter 3 contained parameters describ-

ing the fitness impact of each amino acid residue in each single position, and each pair of

amino acids in each pair of positions. In comparing our model predictions against clinical and

experimental data, we twice encountered a situation in which the experimentally reported

viral strains contained amino acid residues absent in our MSA and therefore not contained

within our model. Rather than simply discarding these sequences from our comparisons, we

constructed two separate augmented models containing parameters for amino acid variants

that were unobserved in the MSA.

The first augmentation was required in order to fully compare our model predictions

with the measured in vitro fitness data in section 3.3.1. Of the 31 in vitro measurements

we collated from the literature, 30 of them – all from the same lab [4, 5] – used the H77

sequence (GenBank Accession No. M67463) as their wild type baseline sequence, rather than

the more commonly used H77S.3 sequence (GenBank Accession No. AF011751). Our fitted
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Potts model contained all amino acids in H77S.3, but did not contain parameters for six

residues in H77: K2469, A2512, L2637, R2703, R2715, and W2925. To assign energies to

all strains considered, we augmented our model with parameters for these six unobserved

residues to generate Augmented Model I.

The second augmentation was required to assign energies to all of the clinically observed

escape, and compensatory, mutations that we analyzed in section 3.3.2, and the sequences

in the longitudinal studies considered in section 3.3.4. The sequences from the longitudinal

studies contained 456 residues in particular positions not observed in our MSA. The clini-

cal escape mutations contained two amino acids that were not contained in our MSA, and

which were coincident with two of the 456 unobserved amino acids within the longitudinal

data. Accordingly, in order to assign energies to all longitudinal strains and escape muta-

tions we augmented our model with parameters for the 456 unobserved residues to generate

Augmented Model II.

To perform model augmentation it is necessary to incorporate hi and Jij parameters for

each unobserved residue in position i. To estimate values of these model parameters, we

specified the probability with which the unobserved amino acids appear within the MSA to

be non-zero using pseudo-counts [144, 171]. This procedure adds a (possibly non-integer)

number of fictitious observations of the amino acid within the MSA to reflect the belief that

the probability of observing this amino acid in this position is not precisely zero, but rather a

low-probability event that is not observed within the finite number of strains within the MSA.

From a Bayesian perspective, the use of pseudo-counts may be considered the incorporation

of prior knowledge into the model inference procedure [171], in this case the prior knowledge

that the probability that these amino acids exist within an HCV strain should be non-zero.

In this work, we specify the pseudo-count modified probability of observing amino acid A in

position i, Pi(A), as,

Pi(A) =
1

λ+N

(
λ

qi
+

N∑
k=1

δA,zki

)
, (C.1)
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where N is the number of sequences in our MSA, qi is the number of distinct amino acids

(including this unobserved amino acids added to the model) at position i, zki is the identity

of the amino acid in position i in sequence k of the MSA, δA,zki is an indicator function that

is unity when A = zki and zero otherwise, and λ is a pseudo-count [144, 229]. At positions

where we supplement our model with unobserved amino acids, we choose λ = qiN
N+1−qi such

that for an unobserved amino acid A at that position, Pi(A) = 1
N+1

. This quantity may

be interpreted as an estimated upper bound on the frequency with which amino acid A is

observed in position i corresponding to supplementing the MSA with one (hypothetical)

additional sequence containing amino acid A in position i. We then iteratively rescaled the

two-position target probabilities, Pij(A,B), such that the marginal probabilities over i and

j are consistent with the one-position target probabilities, Pi(A) [12]. At positions where no

unobserved amino acids were added, no pseudo-counts were added (i.e., λ = 0).

Having specified the pseudo-count modified probabilities, we re-fitted the parameters

of the Potts model using the procedure detailed in section 3.2.2. Constituting a relatively

small perturbation to the target probabilities for the fitting procedure, the model param-

eters changed very little from their unaugmented values, and by initializing the {hi} and

{Jij} parameters to their unaugmented values, the fitting procedure quickly converged. The

energy predictions of the augmented and unaugmented models are in close agreement, as

illustrated by the correspondence of strain energies in figure 2 (augmented model) and figure

C.3 (unaugmented model).

C.3 Predicted fitness costs of clinical escape

mutations

In section 3.3.2 we looked at the energy cost (fitness cost) of documented escape mutations

and where these costs fall in the spectrum of possible mutations. Three of the single muta-

tions, K2471R, Q2467K, and R2937S, fall in the 36th, 74th and 96th percentiles, respectively.
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Two of the double mutations, R2937G/I2940T and Q2467K/K2471R fall in the 33rd and 61st

percentiles, respectively. The relatively high energy (fitness) costs of these mutations can be

rationalized by the fact that they are almost always observed in concert with compensatory

mutations that place them far lower on the energy (fitness) cost spectrum. The details of

those compensatory mutations follow.

K2471R (36th percentile) and Q2467K (74th percentile) are typically observed as the

double mutant, Q2467K/K2471R (61st percentile). Furthermore, they are almost always

seen in connection with another mutation H2453Y which is compensatory and mediates

further immune escape [3]. H2453Y is an escape mutation in a nearby epitope presented by

the same HLA molecule. H2453Y/K2471R falls in the 20th percentile of all double mutants

with ∆E = 12.50, and H2453Y/Q2467K falls in the 34th percentile of all double mutants

with ∆E = 14.05. The triple mutant H2453Y/Q2467K/K2471R falls in the 35th percentile

of all triple mutants with ∆E = 21.42.

We observe that the Q2467K/K2471R double mutant may represent a temporary “meta-

stable” escape, since K2471R was observed to revert back to wild type after Q2467K was

replaced by the Q2467L polymorphism. This alternative escape mutation has been reported

to be less effective at mediating CTL escape, but is of much higher fitness (lower energy),

falling in the 4th percentile of the energy spectrum [3].

R2937S (96th percentile) is very rare and is always observed to be accompanied by E2875K

and P2881Q [4]. This E2875K/P2881Q/R2937S triple mutant falls in the 4th percentile of

all triple mutants and has an energy cost ∆E = 13.26. R2937G/I2940T (33rd percentile) is

also very rare and always observed with E2875K and P2881Q [4].

C.4 Longitudinal clonal sequencing study

In section 3.3.4 we analyzed longitudinal sequencing data of HCV progression in Patient

M003 and the two children to whom she gave birth during the study and vertically trans-
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mitted HCV – Patients C003 and D003 – as reported in ref. [3]. For concision, we considered

in chapter 3 only the average energy assigned by our model to the strains at each time point,

Ē, in our predictions of the fitness of the viral ensemble over the course of the study. Here

we present a more detailed analysis of the clonal sequencing data for M003 (and her children

C003 and D003), for whom multiple sequences are available for each time point.

Table C.5 presents, for each viral strain identified at each time point, the energy of the

strain from by our model, and the sequence of the 6 epitopes B*15-LLRHHNMVY2450−2458,

B*15-SQRQKKVTF2466−2474, A*02-RLIVFPDLGV2578−2587, A*02-ALYDVVSKL2594-2602,

A*02-GLQDCTMVL2727-2735, and A*31-VGIYLLPNR3003−3011 for which M003 possesses the

cognate HLA molecules, and position 2510 which is associated with an A*31 associated

polymorphism (S2510N) [230]. As our reference sequence for this analysis we adopt the

consensus sequence at the first time point of the study at 0.0 months.

M003 presented with acute HCV during her pregnancy with C003 at 0.0 months. Con-

sistent with a suppressed immune system due to maternofatel immune tolerance, our model

assigns high fitness (low energy) to the sequences retrieved at this time and at the time of

delivery (1.3 months). The sequences reveal scattered mutations within epitopes, but all are

transient and do not appear to be correlated with host immune pressure.

After delivery of C003 at 7.2 months our model predicts a sharp decrease in fitness (in-

crease in energy) in all sequences reported in M003, that appears to be correlated with

an increase in host immune pressure due to disappearance of the maternofetal immune

tolerance mechanism after delivery of the infant. In particular, the sequence ensemble con-

tains four immune related polymorphisms: H2453Y, Q2467X, K2471R, and S2510N. The

H2453Y mutation appears in epitope B*15-LLRHHNLVY2450−2458 and is known to abro-

gate T-cell recognition [3]. The mutations Q2467X and K2471R appear in epitope B*15-

SQRQKKVTF2466−2474. Although the specific information on all polymorphisms present is

not available, Q2476L is reported to decrease T-cell recognition and Q2467K/K2471R to

abolish it [3]. Our model predicts the energy cost of Q2467K (∆E = 9.0) to be more than
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three times that of Q2467L (∆E = 2.8). The elimination of Q2467L in favor of Q2467K by

month 10.7 is consistent with a scenario of mounting immune pressure on this epitope, and

the fixation of a higher fitness cost escape mutation that more effectively abrogates T-cell

recognition. The A*31 associated polymorphism S2510N also becomes fixed in M003 after

delivery, consistent with her HLA haplotype.

As M003 enters a second pregnancy with D003 at month 8.3, our model again pre-

dicts an increase in the fitness of the viral ensemble (decrease in energy) consistent with

suppression of specific HCV host immune pressure by the maternofetal immune tolerance

mechanism. In addition to an increase in fitness (decrease in energy) of most sequences, by

month 16.8, K2471R has reverted to wild type, and Q2467K/H to Q2467L in all but one

sequence, consistent with a decrease in host immune pressure mediating the reversion of high

fitness cost escape mutations. These reversions persisted for several months post-delivery of

D003, but at 4.3 months after delivery (21.5 months) the rebounding of M003 host immune

pressure induced the more costly, but more effective, escape mutations to arise again, with

Q2467K/K2471R appearing in half of the clonal population.

The next ensemble of viral sequences from M003 are reported more than a year later, at

36.9 months. At this time all the sequences possess the wild type amino acid at position 2451

and a histidine residue at position 2467. Our model predicts the cost of Q2467H (∆E = 4.0)

to be intermediate to that of Q2467L and Q2467K/K2451R. We suggest that Q2467H offers

some immune escape and hence is tolerated over the more fit Q2467L. The final sequence data

from M003 come after another year, at 49.0 months. Continuing to evolve under immune

pressure a new polymorphism arises in half the sequences, Q2467T. In all cases Q2467T

appears with K2571R. Our model predicts that Q2467T/K2451R (∆E = 18.2) is less fit

than Q2467K/K2451R (∆E = 16.3); however we see a increase in the fitness of the strains

with Q2467T/K2451R indicating that compensatory mutations arose to make it more fit.

None of the sequences vertically transmitted to either child C003 and D003 show sig-

nificant differences from the maternal sequences at (or near) the time of birth. Sequences
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within C003 25 weeks after birth (at 7.2 months) contain none of the escape mutations that

arose within in the mother after delivery, consistent with transmission of a fit HCV strain

from the immunosuppressed mother “outrunning” the nascent immune system of the new-

born [3] . Sequences within D003 12 weeks after birth (at 20.1 months) contain the S2510N

polymorphism and H2453Y and Q2467L polymorphisms within the HLA-B*15 associated

epitopes LLRHHNLVY2450−2458 and SQRQKKVTF2466−2474 present in the mother before de-

livery, and constitute a slightly more fit population (E = 52.2) of viral strains than those of

the mother at time of delivery. D003 inherited the HLA-B*1501 class I molecule from the

mother, and that reversion of the polymorphisms within these unfit strains is not observed is

consistent with continued immune pressure at these epitopes by the child’s immune system.
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C.5 Figures

A B

C

Figure C.1: Comparison for each amino acid, Ai, at each position, i, the (A) one-position,
P1(Ai), (B) two-position, P2(Ai, Aj), and (C) three-position, P3(Ai, Aj, Ak), amino acid
frequencies observed within the MSA, P1target, to those computed by the fitted Potts model,
P1model, by performing 99,990 rounds of Monte-Carlo sampling from the model (cf. ref.
[12]). The parameters of the model were explicitly fitted to reproduce the one and two-
position frequencies and so are expected to reproduce the observed mutational frequencies.
That the model also predicts the three-position amino acid frequencies observed within the
MSA demonstrates that our model predicts higher order mutational correlations within its
effective one and two-position interaction parameters.
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Figure C.2: Comparison of the second order cumulants for each pair of amino acids, Ai and
Aj, at each pair of positions, κ2(Ai, Aj) = P2(Ai, Aj)− P1(Ai)P1(Aj) observed within the
MSA, κ2, target, to those computed by the fitted Potts model by performing 99,990 rounds of
Monte-Carlo sampling from the model, κ2, model, (cf. ref. [12]). κ2 measures the difference
between actual two-position probability of observing a particular pair of amino acids at
a particular pair of positions and the two-position probability that would be expected if
the two positions were mutationally uncoupled. κ2 ∈ [−0.25, 0.25], where κ2 ¿ 0 indicates
that the mutations are correlated, κ2 = 0 uncorrelated, and κ2 ¡ 0 anti-correlated. To
define a statistically-significant correlation, we performed 10 independent scrambles of the
columns of the MSA to randomize the amino acids located in each position of the protein
and artificially break mutational correlations. The dashed lines in the plot indicate the
0.5th and 99.5th percentiles of the observed distribution of κ2 under this permutation test
– κ0.5%2, model = −2.3 × 10−3 and κ99.5%2, model = 2.5 × 10−3 – presenting an empirical measure
of the expected range of κ2 in the absence of mutational correlations and defining a 1%
significance level for measured values of κ2. The distribution of κ2, target indicates that while
most mutational pairs are relatively uncorrelated, there are a significant number of strongly
correlated and anti-correlated mutations, reflecting the presence of important epistatic effects
within the protein. Furthermore, the clustering of the data around the diagonal indicates
that our model captures these epistatic effects.
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Figure C.3: Comparison of the in vitro replicative fitness relative to wild type, f/fwt,
measured for 31 engineered NS5B mutants containing up to four polymorphisms [3–5]
against the energy relative to H77S.3 reference sequence, (E − Ewt), of each strain pre-
dicted by our unaugmented model. A strong and statistically significant negative correla-
tion, ρSpearman = −0.72 (p = 9.2 × 10−6), validates our fitted model as a good predictor of
intrinsic viral fitness. A linear least-squares fit is provided to guide the eye, and error bars
delineate estimated uncertainties in the measured relative fitness.
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Figure C.4: Comparison of the energy costs (fitness penalties) relative to the H77 wild
type reference sequence predicted by our model for all polymorphisms observed within our
MSA occurring within the nine indicated CTL epitopes. All nine epitopes possess single
amino acid mutations known to confer CTL escape. The energy cost associated with each
single mutation, ∆E, is along the abscissa, and the mutations are shown along the ordinate.
Dashes indicate unmutated positions, and letters the mutant amino acid residue. The letter
X indicates an unknown amino acid type that was inconclusively identified by experimental
sequencing within the ensemble sequences constituting the MSA used to fit our model. The
greater the energy cost, the higher the fitness penalty. Polymorphisms possessing negative
∆E values are those predicted to elevate fitness relative to the H77 reference sequence. Red
bars denote documented escape mutations that abrogate CTL recognition, green bars denote
cross-reactive mutations that do not mediate escape, brown bars denote polymorphisms that
have been reported both as escapes and as cross-reactive, blue bars denote mutations for
which no specific clinical information is available. In panels A-G, one or more of the first,
second, or third least costly polymorphisms within the epitope corresponds to a documented
escape mutation. In panel H the escape mutation has the ninth lowest cost, although we note
that it remains disputed as to whether this polymorphism conveys escape or is cross reactive
[6, 10, 13–16]. In panel I the escape mutation is the seventh lowest cost polymorphism.
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Figure C.5: Plots of the energy (fitness) cost of all double mutations observed within
our MSA within the CTL epitopes (a) ARMILMTHF2841−2849 and (b) THFFSVLI-
ARDQ2847−2858. These two epitopes require at least two mutations in order to escape CTL
pressure. The energy cost associated with each double mutation, ∆E, is along the abscissa,
and the double mutations – indexed according to their energy cost – are shown along the
ordinate; the greater the energy cost, the higher the fitness penalty. Red bars denote docu-
mented escape mutations. In panel A, the least costly of all double mutants predicted by our
model corresponds to a clinically documented escape mutation. In panel B, the documented
escape mutation lies in the bottom fifth of the energy spectrum of all double mutations,
ranked as the 31/151 lowest energy double mutant.
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C.6 Tables

Table C.1: Los Alamos National Laboratory HCV database (http://www.hcv.lanl.gov) acces-
sion numbers of 386 of 412 sequences shared with us by Dr. Todd Allen (Harvard Medical School)
which are identical to publicly available sequences that now appear in this database.
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Mutations Epitope ∆E % References
D2597E A*02 ALYDVVSKL2594−2602 5.9 22.2 [16]
Q2729R A*02 GLQDCTMLV2727−2735 2.7 4.5 [177]
K2518R A*03 SLTPPHSAK2510−2518 1.7 2.5 [178]
S2510N A*31 epitope incompletely defined 4.7 12.4 [3, 230]
Y3006C A*31 VGIYLLPNR3003−3011 6.5 27.8 [3]
H2453Y B*15 LLRHHNMVY2450−2458 5.2 15.6 [3, 176]
M2456L B*15 LLRHHNMVY2450−2458 0.0 0.1 [176]
S2466C B*15 SQRQKKVTF2466−2474 0.0 0.1 [176, 181, 231]
K2471R B*15 SQRQKKVTF2466−2474 7.2 36.1 [3]
Q2467H B*15 SQRQKKVTF2466−2474 4.0 7.8 [3]
Q2467K B*15 SQRQKKVTF2466−2474 9.0 74.4 [3]
Q2467L B*15 SQRQKKVTF2466−2474 2.8 4.6 [3, 176]
R2937S B*27 GRAAICGKY2936−2944 10.2 96.6 [4]
R2937K B*27 GRAAICGKY2936−2944 0.0 0.1 [4]
I2940T B*27 GRAAICGKY2936−2944 5.5 18.4 [4]
K2943R B*27 GRAAICGKY2936−2944 3.6 7.0 [4]
K2629N B*57 KSKKTPMGF2629−2637 4.6 11.2 [5]
K2629Q B*57 KSKKTPMGF2629−2637 6.8 31.6 [5]
K2629S B*57 KSKKTPMGF2629−2637 5.8 21.6 [5]
T2633A B*57 KSKKTPMGF2629−2637 4.8 13.0 [5]
T2633S B*57 KSKKTPMGF2629−2637 4.4 9.8 [5]
T2633V B*57 KSKKTPMGF2629−2637 4.2 9.0 [5]
T2633N B*57 KSKKTPMGF2629−2637 3.1 5.1 [5, 8]
H2453N unknown SLLRHHNLVYSTTSRSA2449−2465 4.6 10.9 [6]

Q2467K/K2471R B*15 SQRQKKVTF2466−2474 16.3 61.4 [3]
A2841V/I2844V B*27 ARMILMTHF2841−2849 7.3 3.7 [11]
A2841V/M2846L B*27 ARMILMTHF2841−2849 4.0 2.1 [11]
M2846L/T2847P B*27 ARMILMTHF2841−2849 10.5 10.1 [11]
I2844V/T2847P B*27 ARMILMTHF2841−2849 10.8 11.1 [11]
R2937K/I2940V B*27 GRAAICGKY2936−2944 5.2 2.5 [4]
R2937G/I2940T B*27 GRAAICGKY2936−2944 14.0 33.5 [4]
F2849L/I2854M unknown THFFSVLIARDQ2847−2858 9.9 8.2 [6]

A2841V/I2844V/M2846L B*27 ARMILMTHF2841−2849 7.8 1.9 [11]
A2841V/I2844V/T2847S B*27 ARMILMTHF2841−2849 16.5 9.3 [11]
A2841V/M2846L/T2847P B*27 ARMILMTHF2841−2849 10.3 3.0 [11]

Table C.2: List of the 35 escape mutations analyzed in section 3.3.2, the associated epitope
and HLA allele, energy of the mutant relative to the H77 wild type ∆E = (E − Ewt), and
the percentile within which the mutant is located on the energy spectrum of all possible
mutants of the same order.
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Table C.3: List of the 24 NS5B CTL epitopes discussed in section 3.3.5 which are precisely
mapped and for which the restricting allele is known. The index reported in the first column
corresponds to the indices reported in the “Epitopes” column in table C.4. The asterisk char-
acter in the second column indicates those epitopes for which some mutations are known to
be cross reactive. In calculating the cost of escape for these epitopes we eliminated under our
simulated CTL targeting procedure detailed in section 3.3.5 all strains reported to be anti-
genic. We also report the change in the average energy of a strain in the population, ∆〈E〉,
upon eliminating those strains with wild type epitopes, whether the epitope is reported to
be immunodominant, and if the associated HLA allele is correlated with protection.

110



Index # Components ∆〈E〉 Population Coverage Epitopes

1 1 1.1 35.0% 16

2 2 2.1 35.0% 16 17

3 2 1.9 50.1% 4 16

4 3 2.9 50.1% 4 16 17

5 3 2.1 54.4% 4 9 16

6 3 2.6 52.9% 4 12 16

7 3 2.3 54.4% 2 4 16

8 4 3.0 54.4% 4 9 16 17

9 4 3.6 52.9% 4 12 16 17

10 4 3.3 54.4% 2 4 16 17

11 4 2.8 57.2% 4 9 12 16

12 4 2.5 58.7% 2 4 9 16

13 4 3.0 57.2% 2 4 12 16

14 5 3.8 57.2% 4 9 12 16 17

15 5 3.5 58.7% 2 4 9 16 17

16 5 4.4 52.9% 4 12 14 16 17

17 5 4.0 57.2% 2 4 12 16 17

18 5 3.2 61.4% 2 4 9 12 16

19 5 2.6 61.9% 2 4 9 13 16

20 6 4.8 52.9% 4 12 14 16 17 18

21 6 4.5 57.2% 4 9 12 14 16 17

22 6 4.2 61.4% 2 4 9 12 16 17

23 6 3.6 61.9% 2 4 9 13 16 17

24 6 4.8 57.2% 2 4 12 14 16 17

25 6 3.3 64.7% 2 4 9 12 13 16

26 7 5.0 57.2% 4 9 12 14 16 17 18

27 7 5.2 57.2% 2 4 12 14 16 17 18

28 7 3.4 66.7% 2 4 5 9 12 13 16

29 7 4.9 61.4% 2 4 9 12 14 16 17

30 7 4.3 64.7% 2 4 9 12 13 16 17

31 7 3.4 67.1% 2 4 7 9 12 13 16

32 8 5.4 61.4% 2 4 9 12 14 16 17 18

33 8 5.6 57.2% 2 4 6 12 14 16 17 18

34 8 4.4 66.7% 2 4 5 9 12 13 16 17

35 8 3.5 69.2% 2 4 5 7 9 12 13 16

36 8 5.0 64.7% 2 4 9 12 13 14 16 17

37 8 4.4 67.1% 2 4 7 9 12 13 16 17

Continued on next page
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38 9 5.5 64.7% 2 4 9 12 13 14 16 17 18

39 9 5.8 61.4% 2 4 6 9 12 14 16 17 18

40 9 5.9 57.2% 2 4 6 12 14 16 17 18 19

41 9 5.2 66.7% 2 4 5 9 12 13 14 16 17

42 9 4.5 69.2% 2 4 5 7 9 12 13 16 17

43 9 3.5 71.0% 2 4 5 7 9 12 13 16 22

44 9 3.5 69.3% 1 2 4 5 7 9 12 13 16

45 9 5.2 67.1% 2 4 7 9 12 13 14 16 17

46 10 5.6 66.7% 2 4 5 9 12 13 14 16 17 18

47 10 6.0 61.4% 2 4 6 9 12 14 16 17 18 19

48 10 5.6 67.1% 2 4 7 9 12 13 14 16 17 18

49 10 5.9 64.7% 2 4 6 9 12 13 14 16 17 18

50 10 5.3 69.2% 2 4 5 7 9 12 13 14 16 17

51 10 4.5 71.0% 2 4 5 7 9 12 13 16 17 22

52 10 4.6 69.3% 1 2 4 5 7 9 12 13 16 17

53 10 3.5 71.2% 1 2 4 5 7 9 12 13 16 22

54 11 5.7 69.2% 2 4 5 7 9 12 13 14 16 17 18

55 11 6.1 66.7% 2 4 5 6 9 12 13 14 16 17 18

56 11 6.2 64.7% 2 4 6 9 12 13 14 16 17 18 19

57 11 6.0 67.1% 2 4 6 7 9 12 13 14 16 17 18

58 11 5.3 71.0% 2 4 5 7 9 12 13 14 16 17 22

59 11 5.3 69.3% 1 2 4 5 7 9 12 13 14 16 17

60 11 4.6 71.2% 1 2 4 5 7 9 12 13 16 17 22

61 12 6.3 66.7% 2 4 5 6 9 12 13 14 16 17 18 19

62 12 5.7 71.0% 2 4 5 7 9 12 13 14 16 17 18 22

63 12 5.7 69.3% 1 2 4 5 7 9 12 13 14 16 17 18

64 12 6.2 69.2% 2 4 5 6 7 9 12 13 14 16 17 18

65 12 6.3 67.1% 2 4 6 7 9 12 13 14 16 17 18 19

66 12 5.3 71.2% 1 2 4 5 7 9 12 13 14 16 17 22

67 13 6.4 69.2% 2 4 5 6 7 9 12 13 14 16 17 18 19

68 13 5.7 71.2% 1 2 4 5 7 9 12 13 14 16 17 18 22

69 13 6.2 71.0% 2 4 5 6 7 9 12 13 14 16 17 18 22

70 13 6.2 69.3% 1 2 4 5 6 7 9 12 13 14 16 17 18

71 14 6.5 69.2% 2 4 5 6 7 8 9 12 13 14 16 17 18 19

72 14 6.4 71.0% 2 4 5 6 7 9 12 13 14 16 17 18 19 22

73 14 6.4 69.3% 1 2 4 5 6 7 9 12 13 14 16 17 18 19

74 14 6.2 71.2% 1 2 4 5 6 7 9 12 13 14 16 17 18 22

Continued on next page
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75 15 6.5 69.2% 2 4 5 6 7 8 9 10 12 13 14 16 17 18 19

76 15 6.5 71.0% 2 4 5 6 7 8 9 12 13 14 16 17 18 19 22

77 15 6.5 69.3% 1 2 4 5 6 7 8 9 12 13 14 16 17 18 19

78 15 6.4 71.2% 1 2 4 5 6 7 9 12 13 14 16 17 18 19 22

79 16 6.5 71.0% 2 4 5 6 7 8 9 10 12 13 14 16 17 18 19 22

80 16 6.5 71.2% 1 2 4 5 6 7 8 9 12 13 14 16 17 18 19 22

81 16 6.5 69.3% 1 2 3 4 5 6 7 8 9 12 13 14 16 17 18 19

82 17 6.5 69.3% 1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19

83 17 6.5 71.2% 1 2 3 4 5 6 7 8 9 12 13 14 16 17 18 19 22

84 18 6.5 69.3% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19

85 18 6.5 71.2% 1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 22

86 19 6.5 71.2% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 22

Table C.4: List of the 86 optimal immunogen candidates residing on the Pareto frontier of figure

3.6. The number of components corresponds to the number of epitopes in the immunogen candi-

date, the population coverage is the fraction of the target population of the the top 66 haplotypes

of North Americans who respond to at least one epitope in the immunogen candidate, and ∆〈E〉 is

the weighted averaged impact of the immunogen upon the fitness of the viral ensemble within the

target population as defined in section 3.3.6. The particular epitopes in the immunogen candidate

reported in the last column correspond to the indices in the “Index” column in table C.3.
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Table C.5: The sequence of six epitopes (B*15-LLRHHNMVY2450−2458, B*15-SQ-
RQKKVTF2466-2474, A*02-RLIVFPDLGV2578−2587, A*02-ALYDVVSKL2594-2602, A*02-
GLQDCTMVL2727−2735, and A*31-VGIYLLPNR3003−3011) and one HLA associated polymor-
phism (S2510N) from M003 and her children (C003 and D003) with the energies assigned to
the complete NS5B sequence by our model. The shaded regions of the table indicate periods
of time during which M003 was pregnant with C003 and, subsequently, D003.
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