121 research outputs found

    Global Genetic Diversity of Human Metapneumovirus Fusion Gene

    Get PDF
    We analyzed 64 human metapneumovirus strains from eight countries. Phylogenetic analysis identified two groups (A and B, amino acid identity 93%–96%) and four subgroups. Although group A strains predominated, accounting for 69% of all strains, as many B as A strains were found in persons >3 years of age

    Thrombospondin-1 Is a Major Activator of TGF-β1 In Vivo

    Get PDF
    AbstractThe activity of TGF-β1 is regulated primarily extracellularly where the secreted latent form must be modified to expose the active molecule. Here we show that thrombospondin-1 is responsible for a significant proportion of the activation of TGF-β1 in vivo. Histological abnormalities in young TGF-β1 null and thrombospondin-1 null mice were strikingly similar in nine organ systems. Lung and pancreas pathologies similar to those observed in TGF-β1 null animals could be induced in wild-type pups by systemic treatment with a peptide that blocked the activation of TGF-β1 by thrombospondin-1. Although these organs produced little active TGF-β1 in thrombospondin null mice, when pups were treated with a peptide derived from thrombospondin-1 that could activate TGF-β1, active cytokine was detected in situ, and the lung and pancreatic abnormalities reverted toward wild type

    Wnt/β-catenin signaling is required for development of the exocrine pancreas

    Get PDF
    BACKGROUND: β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis. RESULTS: Pdx1-cre floxed β-catenin animals were viable but demonstrated small body size and shortened median survival. The pancreata from knockout mice were hypoplastic and histologically demonstrated a striking paucity of exocrine pancreas, acinar to duct metaplasia, but generally intact pancreatic islets containing all lineages of endocrine cells. In animals with extensive acinar hypoplasia, putative hepatocyte transdifferention was occasionally observed. Obvious and uniform pancreatic hypoplasia was observed by embryonic day E16.5. Transcriptional profiling of Pdx1-cre floxed β-catenin embryonic pancreata at E14.5, before there was a morphological phenotype, revealed significant decreases in the β-catenin target gene N-myc, and the basic HLH transcription factor PTF1, and an increase of several pancreatic zymogens compared to control animals. By E16.5, there was a dramatic loss of exocrine markers and an increase in Hoxb4, which is normally expressed anterior to the pancreas. CONCLUSION: We conclude that β-catenin expression is required for development of the exocrine pancreas, but is not required for development of the endocrine compartment. In contrast, β-catenin/Wnt signaling appears to be critical for proliferation of PTF1+ nascent acinar cells and may also function, in part, to maintain an undifferentiated state in exocrine/acinar cell precursors. Finally, β-catenin may be required to maintain positional identity of the pancreatic endoderm along the anterior-posterior axis. This data is consistent with the findings of frequent β-catenin mutations in carcinomas of acinar cell lineage seen in humans

    CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation

    Get PDF
    The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (ΔCagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ΔCagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori, that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the wellestablished Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pyloriinduced epithelial cell proliferation

    Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    Get PDF
    Colon tumors from four independent mouse models and 100 human colorectal cancers all exhibited striking recapitulation of embryonic colon gene expression from embryonic days 13.5-18.5

    Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study

    Get PDF
    Background: Both genetic and environmental factors are known to affect body mass index (BMI), but detailed understanding of how their effects differ during childhood and adolescence is lacking. Objectives: We analyzed the genetic and environmental contributions to BMI variation from infancy to early adulthood and the ways they differ by sex and geographic regions representing high (North America and Australia), moderate (Europe), and low levels (East Asia) of obesogenic environments. Design: Data were available for 87,782 complete twin pairs from 0.5 to 19.5 y of age from 45 cohorts. Analyses were based on 383,092 BMI measurements. Variation in BMI was decomposed into genetic and environmental components through genetic structural equation modeling. Results: The variance of BMI increased from 5 y of age along with increasing mean BMI. The proportion of BMI variation explained by additive genetic factors was lowest at 4 y of age in boys (a2 = 0.42) and girls (a2 = 0.41) and then generally increased to 0.75 in both sexes at 19 y of age. This was because of a stronger influence of environmental factors shared by co-twins in midchildhood. After 15 y of age, the effect of shared environment was not observed. The sex-specific expression of genetic factors was seen in infancy but was most prominent at 13 y of age and older. The variance of BMI was highest in North America and Australia and lowest in East Asia, but the relative proportion of genetic variation to total variation remained roughly similar across different regions. Conclusions: Environmental factors shared by co-twins affect BMI in childhood, but little evidence for their contribution was found in late adolescence. Our results suggest that genetic factors play a major role in the variation of BMI in adolescence among populations of different ethnicities exposed to different environmental factors related to obesity

    The CODATwins Project : The Current Status and Recent Findings of COllaborative Project of Development of Anthropometrical Measures in Twins

    Get PDF
    The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m(2)) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural-geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.Peer reviewe

    Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    Get PDF
    Abstract Background The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5. Results We report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear β-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF). Conclusion Cross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and between-modules for next-generation combinatorial therapeutics and improved mouse models

    Geosciences Roadmap for Research Infrastructures 2025 - 2028 by the Swiss Geosciences Community

    Get PDF
    This roadmap is the product of a grassroots effort by the Swiss Geosciences community. It is the first of its kind, outlining an integrated approach to research facilities for the Swiss Geosciences. It spans the planning period 2025-2028. Swiss Geoscience is by its nature leading or highly in-volved in research on many of the major national and global challenges facing society such as climate change and meteorological extreme events, environmental pol-lution, mass movements (land- and rock-slides), earth-quakes and seismic hazards, global volcanic hazards, and energy and other natural resources. It is essential to under- stand the fundamentals of the whole Earth system to pro-vide scientific guidelines to politicians, stakeholders and society for these pressing issues. Here, we strive to gain efficiency and synergies through an integrative approach to the Earth sciences. The research activities of indivi- dual branches in geosciences were merged under the roof of the 'Integrated Swiss Geosciences'. The goal is to facilitate multidisciplinary synergies and to bundle efforts for large research infrastructural (RI) requirements, which will re-sult in better use of resources by merging sectorial acti- vities under four pillars. These pillars represent the four key RIs to be developed in a synergistic way to improve our understanding of whole-system processes and me- chanisms governing the geospheres and the interactions among their components. At the same time, the roadmap provides for the required transition to an infrastructure adhering to FAIR (findable, accessible, interoperable, and reusable) data principles by 2028.The geosciences as a whole do not primarily profit from a single large-scale research infrastructure investment, but they see their highest scientific potential for ground-break-ing new findings in joining forces in establishing state-of-the-art RI by bringing together diverse expertise for the benefit of the entire geosciences community. Hence, the recommendation of the geoscientific community to policy makers is to establish an integrative RI to support the ne- cessary breadth of geosciences in their endeavor to ad-dress the Earth system across the breadth of both temporal and spatial scales. It is also imperative to include suffi-cient and adequately qualified personnel in all large RIs. This is best achieved by fostering centers of excellence in atmospheric, environmental, surface processes, and deep Earth projects, under the roof of the 'Integrated Swiss Geosciences'. This will provide support to Swiss geo-sciences to maintain their long standing and internatio- nally well-recognized tradition of observation, monitor-ing, modelling and understanding of geosciences process-es in mountainous environments such as the Alps and beyond
    corecore