464 research outputs found

    GABAergic compensation in connexin36 knock-out mice evident during low-magnesium seizure-like event activity

    Get PDF
    Gap junctions within the cerebral cortex may facilitate cortical seizure formation by their ability to synchronize electrical activity. To investigate this, one option is to compare wild-type (WT) animals with those lacking the gene for connexin36 (Cx36 KO); the protein that forms neuronal gap junctions between cortical inhibitory cells. However, genetically modified knock-out animals may exhibit compensatory effects; with the risk that observed differences between WT and Cx36 KO animals could be erroneously attributed to Cx36 gap junction effects. In this study we investigated the effect of GABAA-receptor modulation (augmentation with 16 μM etomidate and blockade with 100 μM picrotoxin) on low-magnesium seizure-like events (SLEs) in mouse cortical slices. In WT slices, picrotoxin enhanced both the amplitude (49% increase, p = 0.0006) and frequency (37% increase, p = 0.005) of SLEs; etomidate also enhanced SLE amplitude (18% increase, p = 0.003) but reduced event frequency (25% decrease, p < 0.0001). In Cx36 KO slices, the frequency effects of etomidate and picrotoxin were preserved, but the amplitude responses were abolished. Pre-treatment with the gap junction blocker mefloquin in WT slices did not significantly alter the drug responses, indicating that the reduction in amplitude seen in the Cx36 KO mice was not primarily mediated by their lack of interneuronal gap junctions, but was rather due to pre-existing compensatory changes in these animals. Conclusions from studies comparing seizure characteristics between WT and Cx36 KO mice must be viewed with a degree of caution because of the possible confounding effect of compensatory neurophysiological changes in the genetically modified animals

    Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors

    Get PDF
    Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model

    Survey of Nutrition Education Among Medical Students

    Get PDF
    Introduction: The current literature regarding both specific interventions and the current level of nutrition education in the United States is scarce. The purpose of this paper is to provide medical student perspectives on both the degree and necessity of nutrition education during medical school. Methods: Medicine in Motion (MM) is a non-profit student-run organization founded in 2018 that aims to address burnout in medicine through physical activity, community service, and philanthropy. MM issued a survey to nine of its chapters in January 2021 to assess a range of topics including burnout, physical activity, and nutrition education. Results: Of 5500 invited students, 1182 (21.5%) responded. An average of 1.2 hours of formal nutrition education per year was reported across all participants. Students who received any degree of nutritional education reported 2.9 hours per year. Most students (57.6%) had not participated in a medical school course that provided formal education in nutrition. Of those that did participate in a nutrition course (42.4%), the course was required for 84.7% of students and the majority (80.1%) received 0-10 hours of nutrition education. Most respondents (88.7%) reported that requiring formal nutrition education should be a graduation requirement and a similar number of students (89.3%) believe medical students should receive formal training on nutrition counseling for patients. The majority (93.3%) of students either somewhat or strongly agreed that understanding the effects of nutrition/eating decisions on the human body is critical to maximizing patient care. Conclusion: Based on prior studies, physicians feel underprepared to provide nutrition counseling to their patients despite the large role poor diet plays in the burden of disease. Most medical students in this cohort believe that understanding nutrition is vital to maximize patient care. Funding and curricular changes should be allocated towards expanding the nutrition curriculum across U.S. medical schools

    The Vaginal Microbiome: Disease, Genetics and the Environment

    Get PDF
    The vagina is an interactive interface between the host and the environment. Its surface is covered by a protective epithelium colonized by bacteria and other microorganisms. The ectocervix is nonsterile, whereas the endocervix and the upper genital tract are assumed to be sterile in healthy women. Therefore, the cervix serves a pivotal role as a gatekeeper to protect the upper genital tract from microbial invasion and subsequent reproductive pathology. Microorganisms that cross this barrier can cause preterm labor, pelvic inflammatory disease, and other gynecologic and reproductive disorders. Homeostasis of the microbiome in the vagina and ectocervix plays a paramount role in reproductive health. Depending on its composition, the microbiome may protect the vagina from infectious or non-infectious diseases, or it may enhance its susceptibility to them. Because of the nature of this organ, and the fact that it is continuously colonized by bacteria from birth to death, it is virtually certain that this rich environment evolved in concert with its microbial flora. Specific interactions dictated by the genetics of both the host and microbes are likely responsible for maintaining both the environment and the microbiome. However, the genetic basis of these interactions in both the host and the bacterial colonizers is currently unknown. _Lactobacillus_ species are associated with vaginal health, but the role of these species in the maintenance of health is not yet well defined. Similarly, other species, including those representing minor components of the overall flora, undoubtedly influence the ability of potential pathogens to thrive and cause disease. Gross alterations in the vaginal microbiome are frequently observed in women with bacterial vaginosis, but the exact etiology of this disorder is still unknown. There are also implications for vaginal flora in non-infectious conditions such as pregnancy, pre-term labor and birth, and possibly fertility and other aspects of women&#x2019;s health. Conversely, the role of environmental factors in the maintenance of a healthy vaginal microbiome is largely unknown. To explore these issues, we have proposed to address the following questions:&#xd;&#xa;&#xd;&#xa;*1.&#x9;Do the genes of the host contribute to the composition of the vaginal microbiome?* We hypothesize that genes of both host and bacteria have important impacts on the vaginal microbiome. We are addressing this question by examining the vaginal microbiomes of mono- and dizygotic twin pairs selected from the over 170,000 twin pairs in the Mid-Atlantic Twin Registry (MATR). Subsequent studies, beyond the scope of the current project, may investigate which host genes impact the microbial flora and how they do so.&#xd;&#xa;*2.&#x9;What changes in the microbiome are associated with common non-infectious pathological states of the host?* We hypothesize that altered physiological (e.g., pregnancy) and pathologic (e.g., immune suppression) conditions, or environmental exposures (e.g., antibiotics) predictably alter the vaginal microbiome. Conversely, certain vaginal microbiome characteristics are thought to contribute to a woman&#x2019;s risk for outcomes such as preterm delivery. We are addressing this question by recruiting study participants from the ~40,000 annual clinical visits to women&#x2019;s clinics of the VCU Health System.&#xd;&#xa;*3.&#x9;What changes in the vaginal microbiome are associated with relevant infectious diseases and conditions?* We hypothesize that susceptibility to infectious disease (e.g. HPV, _Chlamydia_ infection, vaginitis, vaginosis, etc.) is impacted by the vaginal microbiome. In turn, these infectious conditions clearly can affect the ability of other bacteria to colonize and cause pathology. Again, we are exploring these issues by recruiting participants from visitors to women&#x2019;s clinics in the VCU Health System.&#xd;&#xa;&#xd;&#xa;Three kinds of sequence data are generated in this project: i) rDNA sequences from vaginal microbes; ii) whole metagenome shotgun sequences from vaginal samples; and iii) whole genome shotgun sequences of bacterial clones selected from vaginal samples. The study includes samples from three vaginal sites: mid-vaginal, cervical, and introital. The data sets also include buccal and perianal samples from all twin participants. Samples from these additional sites are used to test the hypothesis of a per continuum spread of bacteria in relation to vaginal health. An extended set of clinical metadata associated with these sequences are deposited with dbGAP. We have currently collected over 4,400 samples from ~100 twins and over 450 clinical participants. We have analyzed and deposited data for 480 rDNA samples, eight whole metagenome shotgun samples, and over 50 complete bacterial genomes. These data are available to accredited investigators according to NIH and Human Microbiome Project (HMP) guidelines. The bacterial clones are deposited in the Biodefense and Emerging Infections Research Resources Repository (&#x22;http://www.beiresources.org/&#x22;:http://www.beiresources.org/). &#xd;&#xa;&#xd;&#xa;In addition to the extensive sequence data obtained in this study, we are collecting metadata associated with each of the study participants. Thus, participants are asked to complete an extensive health history questionnaire at the time samples are collected. Selected clinical data associated with the visit are also obtained, and relevant information is collected from the medical records when available. This data is maintained securely in a HIPAA-compliant data system as required by VCU&#x2019;s Institutional Review Board (IRB). The preponderance of these data (i.e., that judged appropriate by NIH staff and VCU&#x2019;s IRB are deposited at dbGAP (&#x22;http://www.ncbi.nlm.nih.gov/gap&#x22;:http://www.ncbi.nlm.nih.gov/gap). Selected fields of this data have been identified by NIH staff as &#x2018;too sensitive&#x2019; and are not available in dbGAP. Individuals requiring access to these data fields are asked to contact the PI of this project or NIH Program Staff. &#xd;&#xa

    Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin

    Get PDF
    The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics
    corecore