320 research outputs found

    Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope

    Get PDF
    This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2 GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1 mm in diameter, and also a conical probe tip with a rounded end 0.01 mm in diameter, which allows imaging with higher resolution (≈10 ”m). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity âȘ10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases

    Androgen-dependent Protein Interactions within an Intron 1 Regulatory Region of the 20-kDa Protein Gene

    Get PDF
    The 20-kDa protein gene is androgen regulated in rat ventral prostate. Intron 1 contains a 130-base pair complex response element (D2) that binds androgen (AR) and glucocorticoid receptor (GR) but transactivates only with AR in transient cotransfection assays in CV1 cells using the reporter vector D2-tkCAT. To better understand the function of this androgen-responsive unit, nuclear protein interactions with D2 were analyzed by DNase I footprinting in ventral prostate nuclei of intact or castrated rats and in vitro with ventral prostate nuclear protein extracts from intact, castrated, and testosterone-treated castrated rats. Multiple androgen-dependent protected regions and hypersensitive sites were identified in the D2 region with both methods. Mobility shift assays with 32P-labeled oligonucleotides spanning D2 revealed specific interactions with ventral prostate nuclear proteins. Four of the D2-protein complexes decreased in intensity within 24 h of castration. UV cross-linking of the androgen-dependent DNA binding proteins identified protein complexes of approximately 140 and 55 kDa. The results demonstrate androgen-dependent nuclear protein-DNA interactions within the complex androgen response element D2

    An Introduction to Data Analysis in Asteroseismology

    Full text link
    A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Development of a fully automatic shape model matching (FASMM) system to derive statistical shape models from radiographs: application to the accurate capture and global representation of proximal femur shape

    Get PDF
    SummaryObjectiveTo evaluate the accuracy and sensitivity of a fully automatic shape model matching (FASMM) system to derive statistical shape models (SSMs) of the proximal femur from non-standardised anteroposterior (AP) pelvic radiographs.DesignAP pelvic radiographs obtained with informed consent and appropriate ethical approval were available for 1105 subjects with unilateral hip osteoarthritis (OA) who had been recruited previously for The arcOGEN Study. The FASMM system was applied to capture the shape of the unaffected (i.e., without signs of radiographic OA) proximal femur from these radiographs. The accuracy and sensitivity of the FASMM system in calculating geometric measurements of the proximal femur and in shape representation were evaluated relative to validated manual methods.ResultsDe novo application of the FASMM system had a mean point-to-curve error of less than 0.9 mm in 99% of images (n = 266). Geometric measurements generated by the FASMM system were as accurate as those obtained manually. The analysis of the SSMs generated by the FASMM system for male and female subject groups identified more significant differences (in five of 17 SSM modes after Bonferroni adjustment) in their global proximal femur shape than those obtained from the analysis of conventional geometric measurements. Multivariate gender-classification accuracy was higher when using SSM mode values (76.3%) than when using conventional hip geometric measurements (71.8%).ConclusionsThe FASMM system rapidly and accurately generates a global SSM of the proximal femur from radiographs of varying quality and resolution. This system will facilitate complex morphometric analysis of global shape variation across large datasets. The FASMM system could be adapted to generate SSMs from the radiographs of other skeletal structures such as the hand, knee or pelvis

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxanℱ), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalinℱ) and I-131 tositumomab (Bexxarℱ). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Stability of Black Holes and Black Branes

    Full text link
    We establish a new criterion for the dynamical stability of black holes in D≄4D \geq 4 spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, \E, on a subspace, T\mathcal T, of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. This is shown by proving that---apart from pure gauge perturbations and perturbations towards other stationary black holes---\E is nondegenerate on T\mathcal T and that, for axisymmetric perturbations, \E has positive flux properties at both infinity and the horizon. We further show that \E is related to the second order variations of mass, angular momentum, and horizon area by \E = \delta^2 M - \sum_A \Omega_A \delta^2 J_A - \frac{\kappa}{8\pi} \delta^2 A, thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that for any black brane corresponding to a thermodynamically unstable black hole, sufficiently long wavelength perturbations can be found with \E < 0 and vanishing linearized ADM quantities. Thus, all black branes corresponding to thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of \E on T\mathcal T is equivalent to the satisfaction of a "local Penrose inequality," thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability.Comment: 54 pages, Latex, 2 figures, v2: Anzatz for momentum in proof of Gubser-Mitra conjecture corrected; factor of 2 in symplectic form corrected; several typos in formulas corrected; v3: revised argument concerning horizon gauge condition on p. 10; typos corrected and several minor changes; reference added; v4: formula (86) for \E corrected, footnote adde

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore