72 research outputs found

    Transmittance of a tunable filter at terahertz frequencies

    Get PDF
    A metallic photonic crystal filter has been demonstrated at terahertz frequencies, with the passband tunable over the range of 365–386 GHz. Tuning is achieved by a relative lateral shift of two metallic photonic crystal plates. Each plate is comprised of two orthogonal layers of gratings and integral mounting lugs. The plates are micromachined from silicon wafers then coated in gold to provide metallic electromagnetic behavior. An insertion loss of 3–7 dB and Q in the range of 20–30 was achieved. A shift of 140 ”m gave a tuning range of 21 GHz, tuning sensitivity of 150 GHz/mm, and a fractional tuning range of 6%

    Optimization of photomixers and antennas for continuous-wave terahertz emission

    Get PDF
    We have studied terahertz emission from interdigitated finger photomixers coupled to planar antenna structures. Using both pulsed and continuous-wave excitation, polarization measurements reveal that the antenna design dominates the properties of the radiated output at frequencies below 0.6 THz, while the efficiency at higher frequencies is additionally dependent on the design of the photomixer fingers. We have produced terahertz maps of the device, characterizing the photomixer by measuring the generated power as a function of the excitation position. Together, these measurements have allowed us to understand better the distinct roles of the photomixer and antenna in emission at different fre

    Graviton confinement inside hypermonopoles of any dimension

    Full text link
    We show the generic existence of metastable massive gravitons in the four-dimensional core of self-gravitating hypermonopoles in any number of infinite-volume extra-dimensions. Confinement is observed for Higgs and gauge bosons couplings of the order unity. Provided these resonances are light enough, they realise the Dvali-Gabadadze-Porrati mechanism by inducing a four-dimensional gravity law on some intermediate length scales. The effective four-dimensional Planck mass is shown to be proportional to a negative power of the graviton mass. As a result, requiring gravity to be four-dimensional on cosmological length scales may solve the mass hierarchy problem.Comment: 23 pages, 6 figures, uses iopart. Misprints corrected, references added, matches published versio

    Wave kinetics of random fibre lasers

    Get PDF
    Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Experimental study of the hydrodynamic behaviour of slug flow in a horizontal pipe

    Get PDF
    This paper investigates the unsteady hydrodynamic behaviour of slug flow occurring within an air–silicone oil mixture, within a horizontal 67 mm internal diameter pipe. A series of slug flow regime experiments were performed for a range of injected air superficial velocities (0.29–1.4 m s−1) and for liquid flows with superficial velocities of between 0.05–0.47 m s−1. A pair of Electrical Capacitance Tomography (ECT) probes was used to determine: the slug translational velocities of the elongated bubbles and liquid slugs, the slug frequencies, the lengths of elongated bubbles and the liquid slugs, the void fractions within the elongated bubbles and liquid slugs. The pressure drop experienced along the pipe was measured using a differential pressure transducer cell (DP cell). A comparative analysis of the current experimental data and that previously published experimental confirms good agreement

    Domain wall generation by fermion self-interaction and light particles

    Get PDF
    A possible explanation for the appearance of light fermions and Higgs bosons on the four-dimensional domain wall is proposed. The mechanism of light particle trapping is accounted for by a strong self-interaction of five-dimensional pre-quarks. We obtain the low-energy effective action which exhibits the invariance under the so called \tau-symmetry. Then we find a set of vacuum solutions which break that symmetry and the five-dimensional translational invariance. One type of those vacuum solutions gives rise to the domain wall formation with consequent trapping of light massive fermions and Higgs-like bosons as well as massless sterile scalars, the so-called branons. The induced relations between low-energy couplings for Yukawa and scalar field interactions allow to make certain predictions for light particle masses and couplings themselves, which might provide a signature of the higher dimensional origin of particle physics at future experiments. The manifest translational symmetry breaking, eventually due to some gravitational and/or matter fields in five dimensions, is effectively realized with the help of background scalar defects. As a result the branons acquire masses, whereas the ratio of Higgs and fermion (presumably top-quark) masses can be reduced towards the values compatible with the present-day phenomenology. Since the branons do not couple to fermions and the Higgs bosons do not decay into branons, the latter ones are essentially sterile and stable, what makes them the natural candidates for the dark matter in the Universe.Comment: 34 pages, 2 figures, JHEP style,few important refs. adde
    • 

    corecore