631 research outputs found
A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii
To identify the genes involved in the partial resistance of sunflower (Helianthus annuus) to the necrotrophic fungus Phoma macdonaldii, we developed a 1000‐element cDNA microarray containing carefully chosen genes putatively involved in primary metabolic pathways, signal transduction and biotic stress responses. A two‐pass general linear model was used to normalize the data and then to detect differentially expressed genes. This method allowed us to identify 38 genes differentially expressed among genotypes, treatments and times, mainly belonging to plant defense, signaling pathways and amino acid metabolism. Based on a set of genes whose differential expression was highly significant, we propose a model in which negative regulation of a dual‐specificity MAPK phosphatase could be implicated in sunflower defense mechanisms against the pathogen. The resulting activation of the MAP kinase cascade could subsequently trigger defense responses (e.g. thaumatin biosynthesis and phenylalanine ammonia lyase activation), under the control of transcription factors belonging to MYB and WRKY families. Concurrently, the activation of protein phosphatase 2A (PP2A), which is implicated in cell death inhibition, could limit pathogen development. The results reported here provide a valuable first step towards the understanding and analysis of the P. macdonaldii–sunflower interaction
EquiFACS: the Equine Facial Action Coding System
Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices
The Gut Fungus Basidiobolus ranarum Has a Large Genome and Different Copy Numbers of Putatively Functionally Redundant Elongation Factor Genes
Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes. Using DNA sequencing and a quantitative PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL was in three times the copy number of its putatively functionally overlapping paralog EF-1α. This suggests that gene or genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have mechanisms in place that favor the preservation of functionally overlapping genes
A DNA-based method for studying root responses to drought in field-grown wheat genotypes
Root systems are critical for water and nutrient acquisition by crops. Current methods measuring root biomass and length are slow and labour-intensive for studying root responses to environmental stresses in the field. Here, we report the development of a method that measures changes in the root DNA concentration in soil and detects root responses to drought in controlled environment and field trials. To allow comparison of soil DNA concentrations from different wheat genotypes, we also developed a procedure for correcting genotypic differences in the copy number of the target DNA sequence. The new method eliminates the need for separation of roots from soil and permits large-scale phenotyping of root responses to drought or other environmental and disease stresses in the field.Chun Y. Huang, Haydn Kuchel, James Edwards, Sharla Hall, Boris Parent, Paul Eckermann, Herdina, Diana M. Hartley, Peter Langridge & Alan C. McKa
A meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing
BACKGROUND: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. METHODS: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. RESULTS: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. CONCLUSIONS: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. FUNDING: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study
Galileon Higgs vortices
Vortex solutions are topologically stable field configurations that can play
an important role in condensed matter, field theory, and cosmology. We
investigate vortex configuration in a 2+1 dimensional Abelian Higgs theory
supplemented by higher order derivative self-interactions, related with
Galileons. Our vortex solutions have features that make them qualitatively
different from well-known Abrikosov-Nielsen-Olesen configurations, since the
derivative interactions turn on gauge invariant field profiles that break axial
symmetry. By promoting the system to a 3+1 dimensional string configuration, we
study its gravitational backreaction. Our results are all derived within a
specific, analytically manageable system, and might offer indications for
understanding Galileonic interactions and screening mechanisms around
configurations that are not spherically symmetric, but only at most
cylindrically symmetric.Comment: 26 pages, 8 figure
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
A clinical prediction model for outcome and therapy delivery in transplant-ineligible patients with myeloma (UK Myeloma Research Alliance Risk Profile): a development and validation study
Background: Tolerability of treatments for multiple myeloma can depend on the characteristics of the patient being treated. We aimed to develop and validate a risk profile, using routinely collected data, that could predict overall survival in patients with multiple myeloma who were ineligible for stem-cell transplantation.
Methods: We used patient data from two randomised controlled trials done in patients with newly diagnosed multiple myeloma who were ineligible for stem-cell transplantation (the NCRI Myeloma XI study [NCRI-XI, n=1852] and the MRC Myeloma IX study [MRC-IX, n=520]), to develop the UK Myeloma Research Alliance Risk Profile (MRP) for overall survival. We used multivariable Cox regression with a least absolute shrinkage and selection operator penalty term. Multiple imputation by chained equations was used to account for missing data in the development and internal validation of the model. The MRP was internally validated in NCRI-XI and externally validated in MRC-IX. The D-statistic was estimated in the developed model and used to internally and externally validate the model according to prespecified criteria.
Findings: The MRP included WHO performance status, International Staging System, age, and C-reactive protein concentration as prognostic variables. The MRP was prognostic of overall survival and was successfully internally validated in NCRI-XI and externally validated in MRC-IX (D-statistic NCRI-XI: 0·840 [95% CI 0·718–0·963] and MRC-IX: 0·654 [0·497–0·811]). The MRP groups defining low-risk, medium-risk, and high-risk patients were associated with progression-free survival and early mortality. A decrease in the percentage of protocol dose delivered and quality of life at baseline were associated with increased risk. The MRP groups remained prognostic in patients exposed to different therapeutic combinations and in patients with genetic high-risk disease defined according to both the UK and International Myeloma Working Group definitions.
Interpretation: We have developed and externally validated a risk profile for overall survival containing widely available clinical parameters. This risk profile could aid decision making in patients with multiple myeloma ineligible for stem-cell transplantation, but further external validation is required.
Funding: Medical Research Council, Novartis, Schering Health Care, Chugai, Pharmion, Celgene, Ortho Biotech, Cancer Research UK, Celgene, Merck Sharp & Dohme, and Amgen
- …