182 research outputs found

    Entanglement of a qubit with a single oscillator mode

    Full text link
    We solve a model of a qubit strongly coupled to a massive environmental oscillator mode where the qubit backaction is treated exactly. Using a Ginzburg-Landau formalism, we derive an effective action for this well known localization transition. An entangled state emerges as an instanton in the collective qubit-environment degree of freedom and the resulting model is shown to be formally equivalent to a Fluctuating Gap Model (FGM) of a disordered Peierls chain. Below the transition, spectral weight is transferred to an exponentially small energy scale leaving the qubit coherent but damped. Unlike the spin-boson model, coherent and effectively localized behaviors may coexist.Comment: 4 pages, 1 figure; added calculation of entanglement entrop

    Analysis of the vector and axialvector BcB_c mesons with QCD sum rules

    Full text link
    In this article, we study the vector and axialvector BcB_c mesons with the QCD sum rules, and make reasonable predictions for the masses and decay constants, then calculate the leptonic decay widths. The present predictions for the masses and decay constants can be confronted with the experimental data in the future. We can also take the masses and decay constants as basic input parameters and study other phenomenological quantities with the three-point vacuum correlation functions via the QCD sum rules.Comment: 14 pages, 16 figure

    Geodesic motions in extraordinary string geometry

    Full text link
    The geodesic properties of the extraordinary vacuum string solution in (4+1) dimensions are analyzed by using Hamilton-Jacobi method. The geodesic motions show distinct properties from those of the static one. Especially, any freely falling particle can not arrive at the horizon or singularity. There exist stable null circular orbits and bouncing timelike and null geodesics. To get into the horizon {or singularity}, a particle need to follow a non-geodesic trajectory. We also analyze the orbit precession to show that the precession angle has distinct features for each geometry such as naked singularity, black string, and wormhole.Comment: 15 pages, 11 figure

    Innovations in air sampling to detect plant pathogens

    Get PDF
    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics

    Phase structures of strong coupling lattice QCD with finite baryon and isospin density

    Full text link
    Quantum chromodynamics (QCD) at finite temperature (T), baryon chemical potential (\muB) and isospin chemical potential (\muI) is studied in the strong coupling limit on a lattice with staggered fermions. With the use of large dimensional expansion and the mean field approximation, we derive an effective action written in terms of the chiral condensate and pion condensate as a function of T, \muB and \muI. The phase structure in the space of T and \muB is elucidated, and simple analytical formulas for the critical line of the chiral phase transition and the tricritical point are derived. The effects of a finite quark mass (m) and finite \muI on the phase diagram are discussed. We also investigate the phase structure in the space of T, \muI and m, and clarify the correspondence between color SU(3) QCD with finite isospin density and color SU(2) QCD with finite baryon density. Comparisons of our results with those from recent Monte Carlo lattice simulations on finite density QCD are given.Comment: 18 pages, 6 figures, revtex4; some discussions are clarified, version to appear in Phys. Rev.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish

    Get PDF
    White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Strategic positioning:an integrated decision process for manufacturers

    Get PDF
    Purpose – This paper describes research that has sought to create a formal and rational process that guides manufacturers through the strategic positioning decision. Design/methodology/approach – The methodology is based on a series of case studies to develop and test the decision process. Findings – A decision process that leads the practitioner through an analytical process to decide which manufacturing activities they should carryout themselves. Practical implications – Strategic positioning is concerned with choosing those production related activities that an organisations should carry out internally, and those that should be external and under the ownership and control of suppliers, partners, distributors and customers. Originality/value – This concept extends traditional decision paradigms, such as those associated with “make versus buy” and “outsourcing”, by looking at the interactions between manufacturing operations and the wider supply chain networks associated with the organisation
    • 

    corecore