44 research outputs found
Heavy ion collisions with non-equilibrium Dirac-Brueckner mean fields
The influence of realistic interactions on the reaction dynamics in
intermediate energy heavy ion collisions is investigated. The mean field in
relativistic transport calculations is derived from microscopic Dirac-Brueckner
(DB) self-energies, taking non-equilibrium effects, in particular the
anisotropy of the local phase space configurations, into account. Thus this
approach goes beyond the local density approximation. A detailed analysis of
various in-plane and out-of-plane flow observables is presented for Au on Au
reactions at incident energies ranging from 250 to 800 A.MeV and the results
are compared to recent measurements of the FOPI collaboration. An overall good
agreement with in-plane flow data and a reasonable description of the
out-of-plane emission is achieved. For these results the intrinsic momentum
dependence of the non-equilibrium mean fields is important. On the other hand,
the local density approximation with the same underlying DB forces as well as a
standard non-linear version of the model are less successful in
describing the present data. This gives evidence of the applicability of self
energies derived from the DB approach to nuclear matter also far from
saturation and equilibrium.Comment: 63 pages Latex, using Elsevier style, 20 ps-figures, to appear in
Nucl. Phys.
Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice
BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes
ARTEFACTS: How do we want to deal with the future of our one and only planet?
The European Commission’s Science and Knowledge Service, the Joint Research Centre (JRC), decided to try working hand-in-hand with leading European science centres and museums.
Behind this decision was the idea that the JRC could better support EU Institutions in engaging with the European public. The fact that European Union policies are firmly based on scientific evidence is a strong message which the JRC is uniquely able to illustrate. Such a collaboration would not only provide a platform to explain the benefits of EU policies to our daily lives but also provide an opportunity for European citizens to engage by taking a more active part in the EU policy making process for the future.
A PILOT PROGRAMME
To test the idea, the JRC launched an experimental programme to work with science museums: a perfect partner for three compelling reasons. Firstly, they attract a large and growing number of visitors. Leading science museums in Europe have typically 500 000 visitors per year. Furthermore, they are based in large European cities and attract local visitors as well as tourists from across Europe and beyond.
The second reason for working with museums is that they have mastered the art of how to communicate key elements of sophisticated arguments across to the public and making complex topics of public interest readily accessible. That is a high-value added skill and a crucial part of the valorisation of public-funded research, never to be underestimated.
Finally museums are, at present, undergoing something of a renaissance. Museums today are vibrant environments offering new techniques and technologies to both inform and entertain, and attract visitors of all demographics.JRC.H.2-Knowledge Management Methodologies, Communities and Disseminatio
Fluid challenges in intensive care: the FENICE study A global inception cohort study
Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account
A consensus protocol for functional connectivity analysis in the rat brain
Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience
Stablité des Eléments Trans-ferminums à Haut Spin : Mesure de la barrière de fission de 254No
Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E∗. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence Bf(I), which gives information on the shell energy Eshell(I). Theoretical calculations predict different fission barrier heights from Bf(I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of Bf provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γfission/Γtotal, using transfer reactions. However, for heavy elements such as 254No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γγ/Γfission and its spin dependence, deduced from the entry distribution (I, E∗).Measurements of the gamma-ray multiplicity and total energy for 254No have been performed with beam energies of 219 and 223 MeV in the reaction 208Pb(48Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254No gamma rays were detected using the Gammasphere array as a calorimeter – as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254No gamma rays from those from fission fragments, which are > 10^6 more intense. From this measurement, the entry distribution – i.e. the initial distribution of I and E∗ – is constructed. Each point (I,E∗) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier.The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 MeV of beam energy. The distributions show a saturation of E∗ for high spins. The saturation is attributed to the fact that, as E∗ increases above the saddle, Γfission rapidly dominates. The resulting truncation of the entry distribution at high E∗ allows a determination of the fission barrier height.The experimental entry distributions are also compared with entry distributions calculated with decay cascade codes which take into account the full nucleus formation process, including the capture process and the subsequent survival probability as a function of E∗ and I. We used the KEWPIE2 and NRV codes to simulate the entry distribution.Les noyaux super lourds offrent la possibilité d’étudier la structure nucléaire à trois limites simultanément: en charge Z, spin I et énergie d’excitation E∗. Ces noyaux existent seulement grâce à une barrière de fission créée par les effets de couche. Il est donc important de déterminer cette barrière de fission et sa dépendance en spin Bf(I), qui nous renseigne sur l’énergie de couche Eshell(I). Les théories prédisent des valeurs différentes pour la hauteur de la barrière de fission, allant de Bf(I = 0) = 6.8 MeV dans un modèle macro-microscopique à 8.7 MeV pour des calculs de la théorie de la fonctionnelle de la densité utilisant l’interaction Gogny ou Skyrme. Une mesure de Bf fournit donc un test des théories.Pour étudier la barrière de fission, la méthode établie est de mesurer, par réaction de transfert, l’augmentation de la fission avec l’énergie d’excitation, caractérisée par le rapport des largeurs de décroissance Γfission/Γtotal,. Cependant, pour les éléments lourds comme 254No, il n’existe pas de cible appropriée pour une réaction de transfert. Il faut s’en remettre à un rapport de largeur de décroissance complémentaire: Γγ/Γfission et sa dépendance en spin, déduite de la distribution d’entrée (I, E∗).Des mesures de la multiplicité et l’énergie totale des rayons γ de254No ont été faites aux énergies de faisceau 219 et 223 MeV pour la réaction 208Pb(48Ca,2n) à ATLAS (Argonne Tandem Linac Accelerator System). Les rayons γ du 254No ont été détectés par le multi-détecteur Gammasphere utilisé comme calorimètre – et aussi comme détecteur de rayons γ de haute résolution. Les coïncidences avec les résidus d’évaporation au plan focal du Fragment Mass Analyzer ont permis de séparer les rayons γ du 254No de ceux issus de la fission, qui sont > 10^6 fois plus intenses. De ces mesures, la distribution d’entrée – c’est-à-dire la distribution initiale en I et E∗ – est reconstruite. Chaque point (I,E∗) de la distribution d’entrée est un point où la décroissance γ l’a emporté sur la fission, et ainsi, contient une information sur la barrière de fission.La distribution d’entrée mesurée montre une augmentation du spin maximal et de l’énergie d’excitation entre les énergies de faisceau 219 et 223 MeV. La distribution présente une saturation de E∗ à hauts spins. Cette saturation est attribuée au fait que, lorsque E∗ augmente au-dessus de la barrière, Γfission domine rapidement. Il en résulte une troncation de la distribution d’entrée à haute énergie qui permet la détermination de la hauteur de la barrière de fission.La mesure expérimentale de la distribution d’entrée est également comparée avec des distributions d’entrée calculées par des simulations de cascades de décroissance qui prennent en compte le processus de formation du noyau, incluant la capture et la survie, en fonction de E∗ et I. Dans ce travail, nous avons utilisé les codes KEWPIE2 et NRV pour simuler les distributions d’entrée
Stablité des Eléments Trans-ferminums à Haut Spin (Mesure de la barrière de fission de 254No)
Les noyaux super lourds offrent la possibilité d étudier la structure nucléaire à trois limites simultanément: en charge Z, spin I et énergie d excitation E . Ces noyaux existent seulement grâce à une barrière de fission créée par les effets de couche. Il est donc important de déterminer cette barrière de fission et sa dépendance en spin Bf(I), qui nous renseigne sur l énergie de couche Eshell(I). Les théories prédisent des valeurs différentes pour la hauteur de la barrière de fission, allant de Bf(I = 0) = 6.8 MeV dans un modèle macro-microscopique à 8.7 MeV pour des calculs de la théorie de la fonctionnelle de la densité utilisant l interaction Gogny ou Skyrme. Une mesure de Bf fournit donc un test des théories.Pour étudier la barrière de fission, la méthode établie est de mesurer, par réaction de transfert, l augmentation de la fission avec l énergie d excitation, caractérisée par le rapport des largeurs de décroissance fission/ total,. Cependant, pour les éléments lourds comme 254No, il n existe pas de cible appropriée pour une réaction de transfert. Il faut s en remettre à un rapport de largeur de décroissance complémentaire: g/ fission et sa dépendance en spin, déduite de la distribution d entrée (I, E ).Des mesures de la multiplicité et l énergie totale des rayons g de254No ont été faites aux énergies de faisceau 219 et 223 MeV pour la réaction 208Pb(48Ca,2n) à ATLAS (Argonne Tandem Linac Accelerator System). Les rayons g du 254No ont été détectés par le multi-détecteur Gammasphere utilisé comme calorimètre et aussi comme détecteur de rayons g de haute résolution. Les coïncidences avec les résidus d évaporation au plan focal du Fragment Mass Analyzer ont permis de séparer les rayons g du 254No de ceux issus de la fission, qui sont > 10^6 fois plus intenses. De ces mesures, la distribution d entrée c est-à-dire la distribution initiale en I et E est reconstruite. Chaque point (I,E ) de la distribution d entrée est un point où la décroissance g l a emporté sur la fission, et ainsi, contient une information sur la barrière de fission.La distribution d entrée mesurée montre une augmentation du spin maximal et de l énergie d excitation entre les énergies de faisceau 219 et 223 MeV. La distribution présente une saturation de E à hauts spins. Cette saturation est attribuée au fait que, lorsque E augmente au-dessus de la barrière, fission domine rapidement. Il en résulte une troncation de la distribution d entrée à haute énergie qui permet la détermination de la hauteur de la barrière de fission.La mesure expérimentale de la distribution d entrée est également comparée avec des distributions d entrée calculées par des simulations de cascades de décroissance qui prennent en compte le processus de formation du noyau, incluant la capture et la survie, en fonction de E et I. Dans ce travail, nous avons utilisé les codes KEWPIE2 et NRV pour simuler les distributions d entrée.Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E . These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence Bf(I), which gives information on the shell energy Eshell(I). Theoretical calculations predict different fission barrier heights from Bf(I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of Bf provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths fission/ total, using transfer reactions. However, for heavy elements such as 254No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio g/ fission and its spin dependence, deduced from the entry distribution (I, E ).Measurements of the gamma-ray multiplicity and total energy for 254No have been performed with beam energies of 219 and 223 MeV in the reaction 208Pb(48Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254No gamma rays were detected using the Gammasphere array as a calorimeter as well as the usual high resolution g-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254No gamma rays from those from fission fragments, which are > 10^6 more intense. From this measurement, the entry distribution i.e. the initial distribution of I and E is constructed. Each point (I,E ) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier.The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 MeV of beam energy. The distributions show a saturation of E for high spins. The saturation is attributed to the fact that, as E increases above the saddle, fission rapidly dominates. The resulting truncation of the entry distribution at high E allows a determination of the fission barrier height.The experimental entry distributions are also compared with entry distributions calculated with decay cascade codes which take into account the full nucleus formation process, including the capture process and the subsequent survival probability as a function of E and I. We used the KEWPIE2 and NRV codes to simulate the entry distribution.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
High precision neutron inelastic cross sections on 16 O
International audienceThis work reports partial results of a (n, nγ) measurement on 16 O. The γ rays of interest from the inelastic channel were detected using the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer at the Geel Electron Linear Accelerator (GELINA) neutron source. A very thick (32.30(4) mm) SiO 2 target was used. The main goal was to determine the angle-integrated γ-production cross section for the most important transitions. In this work we report the results for the main 16 O transition and we emphasize a consistency check aiming to ensure data reliability. Our results are compared with theoretical calculations performed using the talys 1.8 code and with previously reported experimental data