285 research outputs found
Keck Hires Observations of the QSO First J104459.6+365605: Evidence for a Large Scale Outflow
This paper presents an analysis of a Keck HIRES spectrum of the QSO FIRST
J104459.6+365605. The line of sight towards the QSO contains two clusters of
outflowing clouds that give rise to broad blue shifted absorption lines. The
outflow velocities of the clouds range from -200 to -1200 km/s and from -3400
to -5200 km/s, respectively. The width of the individual absorption lines
ranges from 50 to more than 1000 km/s. The most prominent absorption lines are
those of Mg II, Mg I, and Fe II. The low ionization absorption lines occur at
the same velocities as the most saturated Mg II lines, showing that the Fe II,
Mg I and Mg II line forming regions must be closely associated. Many absorption
lines from excited states of Fe II are present, allowing a determination of the
population of several low lying energy levels. From this we determine an
electron density in the Fe II line forming regions of 4000 per cubic cm.
Modelling the ionization state of the absorbing gas with this value of the
electron density as a constraint, we find that the distance between the Fe II
and Mg I line forming region and the continuum source is of order 700 parsec.
From the correspondence in velocity between the Fe II, Mg I and Mg II lines
we infer that the Mg II lines must be formed at the same distance. The Mg II
absorption fulfills the criteria for Broad Absorption Lines defined by Weymann
et al. (1991). This large distance is surprising, since BALs are generally
thought to be formed in outflows at a much smaller distance from the nucleus.Comment: 34 pages, 11 figures. Accepted by The Astrophysical Journa
From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry
Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer
mixtures confined between two parallel repulsive structureless walls are
presented and analyzed in the light of current theories on capillary
condensation and interface localization transitions. Choosing a polymer to
colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to
D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used;
phase transitions are analyzed via finite size scaling, as in previous work on
bulk systems and under confinement between identical types of walls. Unlike the
latter work, inequivalent walls are used here: while the left wall has a
hard-core repulsion for both polymers and colloids, at the right wall an
additional square-well repulsion of variable strength acting only on the
colloids is present. We study how the phase separation into colloid-rich and
colloid-poor phases occurring already in the bulk is modified by such a
confinement. When the asymmetry of the wall-colloid interaction increases, the
character of the transition smoothly changes from capillary condensation-type
to interface localization-type. The critical behavior of these transitions is
discussed, as well as the colloid and polymer density profiles across the film
in the various phases, and the correlation of interfacial fluctuations in the
direction parallel to the confining walls. The experimental observability of
these phenomena also is briefly discussed.Comment: 36 pages, 15 figure
A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey II: Discovery of Three Additional Quasars at z>6
We present the discovery of three new quasars at z>6 in 1300 deg^2 of SDSS
imaging data, J114816.64+525150.3 (z=6.43), J104845.05+463718.3 (z=6.23) and
J163033.90+401209.6 (z=6.05). The first two objects have weak Ly alpha emission
lines; their redshifts are determined from the positions of the Lyman break.
They are only accurate to 0.05 and could be affected by the presence of broad
absorption line systems. The last object has a Ly alpha strength more typical
of lower redshift quasars. Based on a sample of six quasars at z>5.7 that cover
2870 deg^2 presented in this paper and in Paper I, we estimate the comoving
density of luminous quasars at z 6 and M_{1450} < -26.8 to be (8 +/-
3)x10^{-10} Mpc^{-3} (for H_0 = 50 km/s/Mpc, Omega = 1). HST imaging of two
z>5.7 quasars and high-resolution ground-based images (seeing 0.4'') of three
additional z>5.7 quasars show that none of them is gravitationally lensed. The
luminosity distribution of the high-redshfit quasar sample suggests the bright
end slope of the quasar luminosity function at z 6 is shallower than Psi
L^{-3.5} (2-sigma), consistent with the absence of strongly lensed objects.Comment: AJ in press (Apr 2003), 26 pages, 9 figure
Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
The State of Coral Reef Ecosystems of Southeast Florida
The northern extension of the Florida reef tract and a complex of limestone ridges run parallel to the subtropical Atlantic coastline of southeast Florida. Spanning 170 km from the northern border of Biscayne National Park (BNP) in Miami-Dade County to the St. Lucie Inlet in Martin County, the reefs and hardbottom areas in this region support a rich and diverse biological community (Figure 5.1). Nearshore reef habitats in southeast Florida include hardbottom areas, patch reefs and worm reefs (Phragmatopoma spp.) exhibiting abundant octocoral, macroalgae, stony coral and sponge assemblages. Offshore, coral reef associated biotic assemblages occur on linear Holocene Acropora palmata mid-shelf and shelf margin reefs that extend from Miami Dade County to Palm Beach County (Lighty, 1977; Figure 5.2). Anastasia Formation limestone ridges and terraces colonized by reef biota characterize the reefs from Palm Beach County to Martin County (Cooke and Mossom, 1929). The coastal region of southeast Florida is highly developed, containing one third of Floridaâs population of 16 million people (U.S. Census Bureau, 2006). Many southeast Florida reefs are located just 1.5 km from this urbanized shoreline. Despite their unique position as the highest latitude reefs along the western Atlantic seaboard, the reefs of southeast Florida have only recently received limited scientific and resource management attention. Andrews et al. (2005) discussed the reefs of southeast Florida and the critical need to implement actions that fill resource knowledge gaps and address conservation and threats to reef health. This report further examines and updates the list of stressors imperiling the health of southeast Floridaâs reefs, and presents information gained from new research, monitoring and management efforts to determine the extent and condition of reef resources in this distinctive region
The Sloan Digital Sky Survey Quasar Lens Search. III. Constraints on Dark Energy from the Third Data Release Quasar Lens Catalog
We present cosmological results from the statistics of lensed quasars in the
Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of
the selection function, we compute the expected number of quasars lensed by
early-type galaxies and their image separation distribution assuming a flat
universe, which is then compared with 7 lenses found in the SDSS Data Release 3
to derive constraints on dark energy under strictly controlled criteria. For a
cosmological constant model (w=-1) we obtain
\Omega_\Lambda=0.74^{+0.11}_{-0.15}(stat.)^{+0.13}_{-0.06}(syst.). Allowing w
to be a free parameter we find
\Omega_M=0.26^{+0.07}_{-0.06}(stat.)^{+0.03}_{-0.05}(syst.) and
w=-1.1\pm0.6(stat.)^{+0.3}_{-0.5}(syst.) when combined with the constraint from
the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy
sample. Our results are in good agreement with earlier lensing constraints
obtained using radio lenses, and provide additional confirmation of the
presence of dark energy consistent with a cosmological constant, derived
independently of type Ia supernovae.Comment: 9 pages, 3 figures, 2 tables, accepted for publication in A
MRI identifies plantar plate pathology in the forefoot of patients with rheumatoid arthritis
Previous cadaveric studies have suggested that forefoot deformities at the metatarsophalangeal (MTP) joints in patients with rheumatoid arthritis (RA) might result from the failure of the ligamentous system and displacement of the plantar plates. This study aimed to examine the relationship between plantar plate pathology and the rheumatoid arthritis magnetic resonance imaging score (RAMRIS) of the lesser (second to fifth) MTP joints in patients with RA using high-resolution 3Â T magnetic resonance imaging (MRI). In 24 patients with RA, the forefoot was imaged using 3Â T MRI. Proton density fat-suppressed, T2-weighted fat-suppressed and T1-weighted post gadolinium sequences were acquired through 96 lesser MTP joints. Images were scored for synovitis, bone marrow oedema and bone erosion using the RAMRIS system and the plantar plates were assessed for pathology. Seventeen females and 7 males with a mean age of 55.5Â years (range 37â71) and disease duration of 10.6Â years (range 0.6â36) took part in the study. Plantar plate pathology was most frequently demonstrated on MRI at the fifth MTP joint. An association was demonstrated between plantar plate pathology and RAMRIS-reported synovitis, bone marrow oedema and bone erosion at the fourth and fifth MTP joints. In patients with RA, 3Â T MRI demonstrates that plantar plate pathology at the lesser MTP joints is associated with features of disease severity. Plantar plate pathology is more common at the fourth and fifth MTP joints in subjects with RA in contrast to the predilection for the second MTP reported previously in subjects without RA
- âŠ