64 research outputs found

    Immunological predictors of CD4+ T cell decline in antiretroviral treatment interruptions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The common response to stopping anti-HIV treatment is an increase of HIV-RNA load and decrease in CD4<sup>+</sup>, but not all the patients have similar responses to this therapeutic strategy. The aim was to identify predictive markers of CD4<sup>+ </sup>cell count declines to < 350/μL in CD4-guided antiretroviral treatment interruptions.</p> <p>Methods</p> <p>27 HIV-infected patients participated in a prospective multicenter study in with a 24 month follow-up. Patients on stable highly active antiretroviral therapy (HAART), with CD4<sup>+ </sup>count > 600/μL, and HIV-RNA < 50 copies/ml for at least 6 months were offered the option to discontinue antiretroviral therapy. The main outcome was a decline in CD4<sup>+ </sup>cell count to < 350/μL.</p> <p>Results</p> <p>After 24 months of follow-up, 16 of 27 (59%) patients (who discontinued therapy) experienced declines in CD4<sup>+ </sup>cell count to < 350/μL. Patients with a CD4<sup>+ </sup>nadir of < 200 cells/μL had a greater risk of restarting therapy during the follow-up (RR (CI95%): 3.37 (1.07; 10.36)). Interestingly, lymphoproliferative responses to <it>Mycobacterium tuberculosis </it>purified protein derivative (PPD) below 10000 c.p.m. at baseline (4.77 (1.07; 21.12)), IL-4 production above 100 pg/mL at baseline (5.95 (1.76; 20.07)) in PBMC cultured with PPD, and increased IL-4 production of PBMC with p24 antigen at baseline (1.25 (1.01; 1.55)) were associated to declines in CD4<sup>+ </sup>cell count to < 350/μL.</p> <p>Conclusion</p> <p>Both the number (CD4<sup>+ </sup>nadir) and the functional activity of CD4<sup>+ </sup>(lymphoproliferative response to PPD) predict the CD4<sup>+ </sup>decrease associated with discontinuation of ART in patients with controlled viremia.</p

    Broadening of Neutralization Activity to Directly Block a Dominant Antibody-Driven SARS-Coronavirus Evolution Pathway

    Get PDF
    Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S) protein of animal and human SARS coronaviruses (SARS-CoVs) during and between two zoonotic transfers (2002/03 and 2003/04) are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs) in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs) with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID) “hot spot” in a light chain CDR (complementarity determining region) alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM) of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural information in combination of chain-shuffling as well as hot-spot CDR mutagenesis, can be exploited to broaden neutralization activity, to improve anti-viral nAb therapies, and directly manipulate virus evolution

    A phase I randomized therapeutic MVA-B vaccination improves the magnitude and quality of the T cell immune responses in HIV-1-infected subjects on HAART

    Get PDF
    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1- specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses

    Effects of Extreme Precipitation to the Distribution of Infectious Diseases in Taiwan, 1994–2008

    Get PDF
    The incidence of extreme precipitation has increased with the exacerbation of worldwide climate disruption. We hypothesize an association between precipitation and the distribution patterns that would affect the endemic burden of 8 infectious diseases in Taiwan, including water- and vector-borne infectious diseases. A database integrating daily precipitation and temperature, along with the infectious disease case registry for all 352 townships in the main island of Taiwan was analysed for the period from 1994 to 2008. Four precipitation levels, <130 mm, 130–200 mm, 200–350 mm and >350 mm, were categorized to represent quantitative differences, and their associations with each specific disease was investigated using the Generalized Additive Mixed Model and afterwards mapped on to the Geographical Information System. Daily precipitation levels were significantly correlated with all 8 mandatory-notified infectious diseases in Taiwan. For water-borne infections, extreme torrential precipitation (>350 mm/day) was found to result in the highest relative risk for bacillary dysentery and enterovirus infections when compared to ordinary rain (<130 mm/day). Yet, for vector-borne diseases, the relative risk of dengue fever and Japanese encephalitis increased with greater precipitation only up to 350 mm. Differential lag effects following precipitation were statistically associated with increased risk for contracting individual infectious diseases. This study’s findings can help health resource sector management better allocate medical resources and be better prepared to deal with infectious disease outbreaks following future extreme precipitation events

    Inefficient Nef-Mediated Downmodulation of CD3 and MHC-I Correlates with Loss of CD4+ T Cells in Natural SIV Infection

    Get PDF
    Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/µl in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of naïve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation

    SARS-CoV receptor

    No full text
    corecore