10 research outputs found

    Improving harmonization and standardization of expanded newborn screening results by optimization of the legacy flow injection analysis tandem mass spectrometry methods and application of a standardized calibration approach

    Get PDF
    Background Newborn screening (NBS) laboratories in the United Kingdom adhere to common protocols based on single analyte cutoff values (COVs); therefore, interlaboratory harmonization is of paramount importance. Interlaboratory variation for screening analytes in UK NBS laboratories ranges from 17% to 59%. While using common stable isotope internal standards has been shown to significantly reduce interlaboratory variation, instrument set-up, sample extraction, and calibration approach are also key factors. Methods Dried blood spot (DBS) extraction processes, instrument set-up, mobile-phase composition, sample introduction technique, and calibration approach of flow injection analysis–tandem mass spectrometry (FIA-MS/MS) methods were optimized. Inter- and intralaboratory variation of methionine, leucine, phenylalanine, tyrosine, isovaleryl-carnitine, glutaryl-carnitine, octanoyl-carnitine, and decanoyl-carnitine were determined pre- and postoptimization, using 3 different calibration approaches. Results Optimal recovery of analytes from DBS was achieved with a 35-min extraction time and 80% methanol (150 μL). Optimized methodology decreased the mean intralaboratory percentage relative SD (%RSD) for the 8 analytes from 20.7% (range 4.1–46.0) to 5.4% (range 3.0–8.5). The alternative calibration approach reduced the mean interlaboratory %RSD for all analytes from 16.8% (range 4.1–25.0) to 7.1% (range 4.1–11.0). Nuclear magnetic resonance analysis of the calibration material highlighted the need for standardization. The purities of isovaleryl-carnitine and glutaryl-carnitine were 85.13% and 69.94% respectively, below the manufacturer’s stated values of ≥98%. Conclusions For NBS programs provided by multiple laboratories using single analyte COVs, harmonization and standardization of results can be achieved by optimizing legacy FIA-MS/MS methods, adopting a common analytical protocol, and using standardized calibration material rather than internal calibration

    Retrospective review of positive newborn screening results for Isovaleric Acidemia and development of a strategy to improve the efficacy of newborn screening in the UK

    Get PDF
    Since the UK commenced newborn screening for isovaleric acidemia in 2015, changes in prescribing have increased the incidence of false positive (FP) results due to pivaloylcarnitine. A review of screening results between 2015 and 2022 identified 24 true positive (TP) and 84 FP cases, with pivalate interference confirmed in 76/84. Initial C5 carnitine (C5C) did not discriminate between FP and TP with median (range) C5C of 2.9 (2.0–9.6) and 4.0 (1.8–>70) µmol/L, respectively, and neither did Precision Newborn Screening via Collaborative Laboratory Integrated Reports (CLIR), which identified only 1/47 FP cases. However, among the TP cases, disease severity showed a correlation with initial C5C in ‘asymptomatic’ individuals (n = 17), demonstrating a median (range) C5C of 3.0 (1.8–7.1) whilst ‘clinically affected’ patients (n = 7), showed a median (range) C5C of 13.9 (7.7–70) µmol/L. These findings allowed the introduction of dual cut-off values into the screening algorithm to reduce the incidence of FPs, with initial C5C results ≥ 5 µmol/L triggering urgent referral, and those >2.0 and <5.0 µmol/L prompting second-tier C5-isobar testing. This will avoid delayed referral in babies at particular risk whilst reducing the FP rate for the remainder
    corecore