2,032 research outputs found

    Daily Mutual Fund Flows and Redemption Policies

    Get PDF
    We examine how redemption policies affect daily fund flows in open-end mutual funds. Since short-term trading of fund shares, as manifested in daily fund flows, can have an adverse impact on returns to the fund’s shareholders, mutual funds might find it desirable to discourage short-term trading through the use of redemption fees. However, if daily fund flows are due to fund shareholders’ legitimate liquidity demands, the redemption fee would have little effect on daily fund flows and possibly adversely affect fund shareholders by imposing a liquidity cost on them. We find that the likelihood of a fund charging a redemption fee is largely a function of its overall fee structure. We also use a sample of funds that imposed redemption fees to examine whether the distribution of daily fund flows changes after the initiation of the redemption fee. We find that the redemption fee is an effective tool in controlling the volatility of fund flows

    Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS

    Get PDF
    Motivation: Epistasis, the presence of gene–gene interactions, has been hypothesized to be at the root of many common human diseases, but current genome-wide association studies largely ignore its role. Multifactor dimensionality reduction (MDR) is a powerful model-free method for detecting epistatic relationships between genes, but computational costs have made its application to genome-wide data difficult. Graphics processing units (GPUs), the hardware responsible for rendering computer games, are powerful parallel processors. Using GPUs to run MDR on a genome-wide dataset allows for statistically rigorous testing of epistasis

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    Recommendations of the task force on public policy

    Get PDF
    This is the published version, reproduced here with permission from the publisher. This article is also available electronically from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741851/.The Task Force on Public Policy was established by the Association for Behavior Analysis to examine ways to encourage members to contribute to policymaking relevant to the public interest. Members discussed issues pertinent to this activity and summarized their discussion in a formal report.' Recommendations of the Task Force for conducting and disseminating policy research and for training, technical assistance, and other services supportive of behavior-analytic research in the public policy arena are presented here

    Effect of the irrigation regime on the susceptibility of pepper and tomato to post-harvest proliferation of Salmonella enterica

    Get PDF
    Raw produce is increasingly recognized as a vehicle of human gastroenteritis. Non-typhoidal Salmonella, pathogenic Escherichia coli, and other human pathogens have been isolated from fruits and vegetables in the field and in the marketplace, which led to the hypothesis that these microbes can use plants as alternate hosts. However, environmental and physiological factors that facilitate persistence of these bacteria in the crop production environment and make produce more vulnerable to post-harvest contamination have not been fully delineated. This study tested the effect of irrigation regimes on the susceptibility of peppers and tomatoes to post-harvest proliferation of Salmonella. The experiments were carried out over three experimental seasons in two locations using seven strains of Salmonella. The irrigation regime per se did not affect susceptibility of tomatoes and peppers to post-harvest proliferation of Salmonella; however, in some of the seasons, irrigation regime-dependent differences were observed. Red peppers and tomatoes were more conducive to proliferation of Salmonella than green fruit in all seasons. Inter-seasonal differences were the strongest factors affecting proliferation of Salmonella in peppers

    Effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to post-harvest proliferation of Salmonella enterica

    Get PDF
    Fresh fruits and vegetables are increasingly recognized as vehicles of salmonellosis. Pre- and post-harvest environmental conditions, and physiological, and genetic factors are thought to contribute to the ability of human pathogens to persist in the production environment, attach to, colonize and proliferate in and on raw produce. How field production conditions affect the post-harvest food safety outcomes is not entirely understood. This study tested how varying nitrogen and potassium fertilization levels affected the "susceptibility" of tomatoes to Salmonella infections following the harvest of fruits. Two tomato varieties grown over three seasons under high, medium, and low levels of nitrogen and potassium fertilization in two locations were inoculated with seven strains of Salmonella. Even though the main effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to infections with Salmonella enterica were not statistically significant overall, differences in nitrogen concentrations in plant tissues correlated with the susceptibility of partially ripe tomatoes (cv. Solar Fire) to Salmonella. Tomato maturity and the season in which tomatoes were produced had the strongest effect on the ability of Salmonella to multiply in tomatoes. Tomato phenolics, accumulation of which is known to correlate with rates of the N fertilization, did not inhibit growth of Salmonella in vitro

    Cytomegaloviral determinants of CD8+ T cell programming and RhCMV/SIV vaccine efficacy

    Get PDF
    Simian immunodeficiency virus (SIV) insert-expressing, 68–1 Rhesus Cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex (MHC)-E- and -II-restricted, SIV-specific CD8(+) T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) has not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68–1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158–161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8(+) T cell response types – MHC-Ia-restricted-only, or a mix of MHC-II- and MHC-Ia-restricted CD8(+) T cells. Response magnitude and functional differentiation are similar to RhCMV 68–1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8(+) T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector

    Reduction of Cosmological Data for the Detection of Time-varying Dark Energy Density

    Full text link
    We present a method for reducing cosmological data to constraints on the amplitudes of modes of the dark energy density as a function of redshift. The modes are chosen so that (1) one of them has constant density and (2) the others are non-zero only if there is time-variation in the dark energy density and (3) the amplitude errors for the time-varying modes are uncorrelated with each other. We apply our method to various combinations of three-year WMAP data, baryon acoustic oscillation data, the 'Gold' supernova data set, and the Supernova Legacy Survey data set. We find no significant evidence for a time-varying dark energy density or for non-zero mean curvature. Although by some measure the limits on four of the time-varying mode amplitudes are quite tight, they are consistent with the expectation that the dark energy density does not vary on timescales shorter than a Hubble time. Since we do not expect detectable time variation in these modes, our results should be viewed as a systematic error test which the data have passed. We discuss a procedure to identify modes with maximal signal-to-noise ratio.Comment: 13 pages, 12 figures; Version accepted for publication by JCAP; Updated with three-year WMAP data; added discussion on systematic error detectio

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    Specific CD8+ T cell responses correlate with control of simian immunodeficiency virus replication in Mauritian cynomolgus macaques

    Get PDF
    Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8+ T cells, but it is not clear whether particular CD8+ T cell responses or a broad repertoire of epitope-specific CD8+ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-Îł ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth
    • 

    corecore