2,673 research outputs found

    Nimbus power systems /1960 - 1969/

    Get PDF
    Power supply subsystems for use on Nimbus satellite progra

    Proof of Rounding by Quenched Disorder of First Order Transitions in Low-Dimensional Quantum Systems

    Full text link
    We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuous symmetry the statement extends up to d<=4 dimensions. This establishes for quantum systems the existence of the Imry-Ma phenomenon which for classical systems was proven by Aizenman and Wehr. The extension of the proof to quantum systems is achieved by carrying out the analysis at the level of thermodynamic quantities rather than equilibrium states.Comment: This article presents the detailed derivation of results which were announced in Phys. Rev. Lett. 103 (2009) 197201 (arXiv:0907.2419). v3 incorporates many corrections and improvements resulting from referee comment

    On the transport and thermodynamic properties of quasi-two-dimensional purple bronzes A0.9_{0.9}Mo6_6O17_{17} (A=Na, K)

    Full text link
    We report a comparative study of the specific heat, electrical resistivity and thermal conductivity of the quasi-two-dimensional purple bronzes Na0.9_{0.9}Mo6_6O17_{17} and K0.9_{0.9}Mo6_6O17_{17}, with special emphasis on the behavior near their respective charge-density-wave transition temperatures TPT_P. The contrasting behavior of both the transport and the thermodynamic properties near TPT_P is argued to arise predominantly from the different levels of intrinsic disorder in the two systems. A significant proportion of the enhancement of the thermal conductivity above TPT_P in Na0.9_{0.9}Mo6_6O17_{17}, and to a lesser extent in K0.9_{0.9}Mo6_6O17_{17}, is attributed to the emergence of phason excitations.Comment: 8 pages, 6 figures, To appear in Physical Review

    Magnetic and electric properties of double-perovskites and estimation of their Curie temperatures by ab initio calculations

    Full text link
    First principles electronic structure calculations have been carried out on ordered double perovskites Sr_2B'B"O_6 (for B' = Cr or Fe and B" 4d and 5d transition metal elements) with increasing number of valence electrons at the B-sites, and on Ba_2MnReO_6 as well as Ba_2FeMoO_6. The Curie temperatures are estimated ab initio from the electronic structures obtained with the local spin-density functional approximation, full-potential generalized gradient approximation and/or the LDA+U method (U - Hubbard parameter). Frozen spin-spirals are used to model the excited states needed to evaluate the spherical approximation for the Curie temperatures. In cases, where the induced moments on the oxygen was found to be large, the determination of the Curie temperature is improved by additional exchange functions between the oxygen atoms and between oxygen and B' and B" atoms. A pronounced systematics can be found among the experimental and/or calculated Curie temperatures and the total valence electrons of the transition metal elements.Comment: 8 pages, 11 figures. Submitted to the Physical Review

    The scaling limit of the energy correlations in non integrable Ising models

    Get PDF
    We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength Ī»\lambda, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in Ī»\lambda. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.Comment: 75 pages, 11 figure

    Non-Fermi liquid angle resolved photoemission lineshapes of Li0.9Mo6O17

    Full text link
    A recent letter by Xue et al. (PRL v.83, 1235 ('99)) reports a Fermi-Liquid (FL) angle resolved photoemission (ARPES) lineshape for quasi one-dimensional Li0.9Mo6O17, contradicting our report (PRL v.82, 2540 ('99)) of a non-FL lineshape in this material. Xue et al. attributed the difference to the improved angle resolution. In this comment, we point out that this reasoning is flawed. Rather, we find that their data have fundamental differences from other ARPES results and also band theory.Comment: To be published as a PRL Commen

    Active Management of Flap-Edge Trailing Vortices

    Get PDF
    The vortex hazard produced by large airliners and increasingly larger airliners entering service, combined with projected rapid increases in the demand for air transportation, is expected to act as a major impediment to increased air traffic capacity. Significant reduction in the vortex hazard is possible, however, by employing active vortex alleviation techniques that reduce the wake severity by dynamically modifying its vortex characteristics, providing that the techniques do not degrade performance or compromise safety and ride quality. With this as background, a series of experiments were performed, initially at NASA Langley Research Center and subsequently at the Berlin University of Technology in collaboration with the German Aerospace Center. The investigations demonstrated the basic mechanism for managing trailing vortices using retrofitted devices that are decoupled from conventional control surfaces. The basic premise for managing vortices advanced here is rooted in the erstwhile forgotten hypothesis of Albert Betz, as extended and verified ingeniously by Coleman duPont Donaldson and his collaborators. Using these devices, vortices may be perturbed at arbitrarily long wavelengths down to wavelengths less than a typical airliner wingspan and the oscillatory loads on the wings, and hence the vehicle, are small. Significant flexibility in the specific device has been demonstrated using local passive and active separation control as well as local circulation control via Gurney flaps. The method is now in a position to be tested in a wind tunnel with a longer test section on a scaled airliner configuration. Alternatively, the method can be tested directly in a towing tank, on a model aircraft, a light aircraft or a full-scale airliner. The authors believed that this method will have significant appeal from an industry perspective due to its retrofit potential with little to no impact on cruise (devices tucked away in the cove or retracted); low operating power requirements; small lift oscillations when deployed in a time-dependent manner; and significant flexibility with respect to the specific devices selected
    • ā€¦
    corecore