1,841 research outputs found

    Quasinormal Modes Beyond Kerr

    Get PDF
    The quasinormal modes (QNMs) of a black hole spacetime are the free, decaying oscillations of the spacetime, and are well understood in the case of Kerr black holes. We discuss a method for computing the QNMs of spacetimes which are slightly deformed from Kerr. We mention two example applications: the parametric, turbulent instability of scalar fields on a background which includes a gravitational QNM, and the shifts to the QNM frequencies of Kerr when the black hole is weakly charged. This method may be of use in studies of black holes which are deformed by external fields or are solutions to alternative theories of gravity.Comment: Proceedings of the Sant Cugat Forum on Astrophysics (2014). Session on 'Gravitational Wave Astrophysics.' 7 page

    A Non-Relativistic Weyl Anomaly

    Full text link
    We examine the Weyl anomaly for a four-dimensional z=3 Lifshitz scalar coupled to Horava's theory of anisotropic gravity. We find a one-loop break-down of scale-invariance at second order in the gravitational background.Comment: LaTeX, 23 pages, no figures, JHEP style; v2: typos fixed to match the published versio

    Restoring Speech Following Total Removal of the Larynx

    Get PDF
    By speech articulator movement and training a transformation to audio we can restore the power of speech to someone who has lost their larynx. We sense changes in magnetic field caused by movements of small magnets attached to the lips and tongue. The sensor transformation uses recurrent neural networks

    Can a pseudo-symmetry solve the cosmological constant problem?

    Full text link
    A general no-go theorem dampens hope that the cosmological constant problem can be solved by a local symmetry mechanism. The possibility is considered here that this no-go theorem can be avoided by a pseudo-symmetry. A simple macroscopic effective field theory is constructed which admits an enhanced pseudo-symmetry in the absence of a cosmological term. It is pointed out that this pseudo-symmetry is an exact classical invariance of superstrings. The conjecture that this pseudo-symmetry survives in the quantum theory has several interesting consequences.Comment: Changes in language (including new title), and assorted perestroika. One new consequence of conjecture. 10 pages, uuencoded Postscript file. To appear in Phys.Lett.

    Could Fermion Masses Play a Role in the Stabilization of the Dilaton in Cosmology?

    Full text link
    We study the possibility that the Dilaton is stabilized by the contribution of fermion masses to its effective potential. We consider the Dilaton gravity action in four dimensions to which we add a mass term for a Dirac fermion. Such an action describes the interaction of the Dilaton with the fermions in the Yang-Mills sector of the coupled supergravity/super-Yang-Mills action which emerges as the low energy effective action of superstring theory after the extra spatial dimensions have been fixed. The Dilaton couples to the Fermion mass term via the usual exponential factor of this field which multiplies the non-kinetic terms of the matter Lagrangian, if we work in the Einstein frame. In the kinetic part of the Fermion action in the Einstein frame the Dilaton does not enter. Such masses can be generated in several ways: they can arise as a consequence of flux about internal spatial dimensions, they may arise as thermal fermion masses in a quasi-static phase in the early universe, and they will arise after the breaking of supersymmetry at late times. The vacuum contribution to the potential for the Dilaton is evaluated up to two loops. The result shows a minimum which could stabilize the Dilaton for reasonable ranges of parameter values.Comment: 11 pages, 1 figure; shortened versio

    Direct Speech Reconstruction From Articulatory Sensor Data by Machine Learning

    Get PDF
    This paper describes a technique that generates speech acoustics from articulator movements. Our motivation is to help people who can no longer speak following laryngectomy, a procedure that is carried out tens of thousands of times per year in the Western world. Our method for sensing articulator movement, permanent magnetic articulography, relies on small, unobtrusive magnets attached to the lips and tongue. Changes in magnetic field caused by magnet movements are sensed and form the input to a process that is trained to estimate speech acoustics. In the experiments reported here this “Direct Synthesis” technique is developed for normal speakers, with glued-on magnets, allowing us to train with parallel sensor and acoustic data. We describe three machine learning techniques for this task, based on Gaussian mixture models, deep neural networks, and recurrent neural networks (RNNs). We evaluate our techniques with objective acoustic distortion measures and subjective listening tests over spoken sentences read from novels (the CMU Arctic corpus). Our results show that the best performing technique is a bidirectional RNN (BiRNN), which employs both past and future contexts to predict the acoustics from the sensor data. BiRNNs are not suitable for synthesis in real time but fixed-lag RNNs give similar results and, because they only look a little way into the future, overcome this problem. Listening tests show that the speech produced by this method has a natural quality that preserves the identity of the speaker. Furthermore, we obtain up to 92% intelligibility on the challenging CMU Arctic material. To our knowledge, these are the best results obtained for a silent-speech system without a restricted vocabulary and with an unobtrusive device that delivers audio in close to real time. This work promises to lead to a technology that truly will give people whose larynx has been removed their voices back

    Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    Get PDF
    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities 5 found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughout DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of 10 members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, 15 fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces, suggesting that inputs of fungi to the atmosphere are from local, rather than distant, sources. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, 20 may be abundant members of active atmospheric fungal communities over the forest canopy

    The Effective Action For Brane Localized Gauge Fields

    Get PDF
    The low energy effective action including gauge field degrees of freedom on a non-BPS p=2 brane embedded in a N=1, D=4 target superspace is obtained through the method of nonlinear realizations of the associated super-Poincare symmetries. The invariant interactions of the gauge fields and the brane excitation modes corresponding to the Nambu-Goldstone degrees of freedom resulting from the broken space translational symmetry and the target space supersymmetries are determined. Brane localized matter field interactions with the gauge fields are obtained through the construction of the combined gauge and super-Poincare covariant derivatives for the matter fields.Comment: 12 pages, no figure
    corecore