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Non-BPS brane dynamics and dual tensor gauge theory
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The action for the long wavelength oscillations of a non-BPS p � 3 brane embedded in N � 1, D � 5
superspace is determined by means of the coset method. The D � 4 world volume Nambu-Goldstone
boson of broken translation invariance and the two D � 4 world volume Weyl spinor Goldstinos of the
completely broken supersymmetry describe the excitations of the brane into the broken space and
superspace directions. The resulting action is an invariant synthesis of the Akulov-Volkov and Nambu-
Goto actions. The D � 4 antisymmetric tensor gauge theory action dual to the p � 3 brane action is
determined.
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I. INTRODUCTION

Brane world scenarios in which our four dimensional
(D � 4) world is assumed to be realized on a solitonic
brane embedded in a higher dimensional space have been
the topic of much research activity [1]. Superstring theo-
ries, which may possibly provide the ultraviolet comple-
tion for such models, also require supersymmetry (SUSY)
in higher dimensional space-time. The minimum number
of supercharges in D � 5 or D � 6 is eight, hence one is
led to consider solitons in SUSY theories with at least eight
supercharges. BPS solitons preserve some fraction of the
SUSYof the underlying model and so the soliton localized
effective field theory also possesses it. 12 -BPS domain walls
breaking eight supersymmetries down to four were dis-
cussed in nonlinear sigma models as well as gauge theories
(see [2,3] and references therein).1 1

2 -BPS vortices in N �

1, D � 6 (eight supersymmetries) gauge theories were also
discussed (see [5] and the references therein). Since the
effective field theory on BPS solitons is still supersymmet-
ric, in the end, their SUSY must be broken if they are to
realize our world. This problem can be resolved if stable
non-BPS branes exist which break SUSY completely on
their world volume theory.

A non-BPS domain wall in a generalized N � 1, D � 4
(four supersymmetries) Wess-Zumino model was discov-
ered in which its world volume is N � 0, D � 3 (no super-
symmetries) [6]. The long wavelength effective action for
such a non-BPS brane was constructed using the method of
nonlinear realizations [7–10] in case the N � 1, D � 4

super-Poincaré symmetries are broken down to N � 0,
D � 3 Poincaré symmetries [11] and equivalently by the
Green-Schwarz method [12], as generalized by Sen [13] to
the non-BPS case [14]. Since the above model with a D �
3 world volume is a toy model for the brane world picture,
higher dimensional models are desired in order to realize a
non-BPS D � 4 world volume. Some N � 1, D � 5 (eight
supersymmetries) short distance models admitting non-
BPS walls have been found recently [15] and the second
reference in [3]. In the former [15], a periodic configura-
tion of BPS and anti-BPS walls was considered in a N � 1,
D � 5 U�1� SUSY gauge theory with two hypermultiplets
of equal charge. There it was shown that the configuration
was stable for small fluctuations and meta-stable for large
fluctuations. Of further interest is the second model in the
second reference in [3] in which the existence of non-BPS
walls was shown, although no explicit solution has been
constructed yet. Briefly, this model consists of a D � 5,
N � 1 SUSYU�NC� gauge theory with NF hypermultiplets
belonging to the fundamental representation. If the Fayet-
Iliopoulos term is added, the model contains NF!=
�NC!�NF � NC�!� discrete degenerate vacua [16]. The gen-
eral solution for 1

2 -BPS domain walls connecting these
vacua was constructed [3]. However, there exists one pair
of vacua which are connected by a non-BPS domain wall in
the case of NF � 4 and NC � 2. There exist more non-BPS
walls connecting different sets of vacua for larger NF

and/or NC.
The purpose of this paper is to construct the low energy

thin domain wall effective action for the non-BPS case by
means of the coset method. In particular the nonlinear
realization describing the breakdown of the N � 1, D �
5 super-Poincaré group to the (N � 0) D � 4 Poincaré
group is given. The appendix contains the N � 1, D � 5
SUSY algebra expressed in terms of the unbroken D � 4

*Email address: clark@physics.purdue.edu
†Email address: nitta@th.phys.titech.ac.jp
‡Email address: terveldhuis@macalester.edu
1Other types of solitons in these models were discussed in [4].

PHYSICAL REVIEW D 70, 125011 (2004)

1550-7998=2004=70(12)=125011(7)$22.50 125011-1  2004 The American Physical Society



Lorentz group decomposition of the charges as a centrally
extended N � 2, D � 4 SUSY algebra. The low energy
D � 4 world volume fields consist of the Nambu-
Goldstone boson scalar field � corresponding to the bro-
ken D � 5 space translation invariance and the two D � 4
Weyl spinor Goldstino fields �� and ��, � � 1, 2, of the
broken N � 1, D � 5 supersymmetry.

In section II, the coset method is used in order to con-
struct the effective action for the domain wall oscillations
in the thin wall limit. This p � 3 brane action is an invari-
ant synthesis of the Akulov-Volkov and Nambu-Goto ac-
tions with � describing the space oscillations of the brane
and � and � describing the oscillations of the brane into the
Grassmann directions of N � 1, D � 5 superspace. The
static gauge action has the form of the determinant of the
induced metric vierbein e	

a

� � ��
Z
d4x dete � ��

Z
d4x detê detN; (1.1)

where � is the brane tension, ê	a is the Akulov-Volkov
vierbein

ê 	
a � �a	 � i��@

$
	�a ��� �@

$
	�a ���; (1.2)

and Na
b is the Nambu-Goto vierbein. After application of

the ‘‘inverse Higgs mechanism’’ [17], Na
b � �a

b �

r̂a�r̂b�
�r̂��2

�
�����������������������
1� �r̂��2

q
� 1�; where the Nambu-Goldstone

boson covariant derivative, r̂a�, is defined as r̂a� �

D̂a��� i���� �� ����, with the Akulov-Volkov partial co-
variant derivative, D̂a, given by D̂a � ê�1	

a @	: The de-
terminant of the Nambu-Goto vierbein yields

detN �

������������������������������������������������������������
1� fD̂a��� i���� �� ����g2

q
: (1.3)

In D � 4 an antisymmetric tensor gauge theory can be
used to equivalently describe the Nambu-Goldstone bosons
of broken internal symmetries [18]. Bagger and Galperin
showed that a tensor field may be regarded as a Nambu-
Goldstone mode for broken translational symmetry in the
case of partially broken supersymmetry on a BPS soliton
[19]. In section III the tensor gauge theory action dual to
the Akulov-Volkov-Nambu-Goto action, Eq. (1.1), is con-
structed. This construction demonstrates the similar role
played by the tensor gauge field in the non-BPS domain
wall case as in the internal symmetry [18] and BPS domain
wall [19] cases. It is a supersymmetric generalization of the
tensor gauge theory action dual to the p � 3 bosonic brane
action. The bosonic brane embedded in D � 5 space-time
has the Nambu-Goto action

�NG � ��
Z
d4x

�����������������������������
1� @	�@

	�
q

: (1.4)

The dual tensor gauge theory action can be found by
introducing the Lagrange multiplier [20] field strength

F	 so that V	 � @	�

�NG � ��
Z
d4x�

����������������������
1� V	V	

q
� F	�V	 � @	���:

(1.5)

The Nambu-Goldstone boson field equation implies that
@	F

	 � 0 with tensor gauge field solution F	 �

�	���@�B��. The vector field V	 equation of motion is
algebraic and so can be eliminated to yield the dual tensor
gauge theory action

�NG � ��
Z
d4x

����������������������
1� F	F	

q
: (1.6)

The coset method action for the N � 1, D � 5 super-
Poincaré symmetries spontaneously broken to D � 4
Poincaré symmetries includes an auxiliary vector field for
the broken D � 5 Lorentz transformations. Eliminating the
Nambu-Goldstone scalar boson � instead of the auxiliary
vector field by means of its Euler-Lagarange equation (see
Ivanov, et al. in [9]) leads directly, as equivalently the
Lagrange multiplier method does, to the dual tensor gauge
theory action

� � ��
Z
d4x

�����������������������������������������
� det�ĝ	� � F	F��

q
; (1.7)

where ĝ	� � ê	a�abê�b is the induced Akulov-Volkov
metric.

II. THE COSET METHOD AND BRANE DYNAMICS

The action for a non-BPS p � 3 brane embedded in N �
1, D � 5 superspace can be constructed by means of the
coset method for the case of the breakdown of the N � 1,
D � 5 super-Poincaré group, denoted G, to the unbroken
D � 4 Poincaré and R symmetry groups, denoted H �
ISO�1; 3� � R. The technique begins with the coset ele-
ment � 2 G=SO�1; 3� � R

� � eix
	P	ei��x�Zei��

��x�Q�� �� _��x� �Q _�����x�S�� �� _��x� �S _��eiv
	�x�K	;

(2.1)

where the x	 denote the D � 4 space-time coordinates
parameterizing the world volume of the 3-brane in the
static gauge, while the Nambu-Goldstone fields, denoted
by ��x�; ���x�; �� _��x�; ���x�; �� _��x� and v	�x�, describe the
co-volume target space excitations of the brane. Taken
together, they act as coordinates of the coset manifold
G=H. Multiplication of the coset elements � by group
elements g 2 G from the left results in transformations of
the space-time coordinates and the Nambu-Goldstone
fields according to the general structure

g� � �0h: (2.2)

The transformed coset element yields the world volume
coordinate transformations and the total variations of the
fields
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�0 � eix
0	P	ei�

0�x0�Zei��
0��x0�Q�� ��0 _��x

0� �Q _���0��x0�S�� ��0
_��x

0� �S _��eiv
0	�x0�K	; (2.3)

while h is a field dependent element of SO�1; 3� � R.
According to the coset construction method, the vierbein, the covariant derivatives of the Nambu-Goldstone fields, and

the spin connection can be obtained from the Maurer-Cartan one-form. The Maurer-Cartan one-form can be determined by
use of the Feynman formula for the variation of an exponential operator along with the Baker-Campbell-Hausdorff
formula. So doing, the Maurer-Cartan one-form is secured

��1d� � i�!aPa �!ZZ�!�
QQ� � �!Q _�

�Q _� �!S�S� � �!S _�
�S _� �!a

KKa �!	�
M M	� �!RR�; (2.4)

where the individual world volume one-forms are found to be

!a � �dxb� i���bd ���d��b �����bd ���d��b �����
�
�b

a��cosh2
������
v2

p
�1�

vbv
a

v2

�
�d��� i���� �� ����

sinh2
������
v2

p

������
v2

p va;

!Z � d��� i���� �� ����cosh2
������
v2

p
��dxa� i���ad ���d��a �����ad ���d��a ����va

sinh2
������
v2

p

������
v2

p ;

!�
Q � cosh

������
v2

p
d���

sinh
������
v2

p

������
v2

p �d �� �6v��; �! �Q _� � cosh
������
v2

p
d �� _��

sinh
������
v2

p

������
v2

p �d� 6v� _�;

!�
S � cosh

������
v2

p
d���

sinh
������
v2

p

������
v2

p �d �� �6v��; �! �S _� � cosh
������
v2

p
d �� _��

sinh
������
v2

p

������
v2

p �d� 6v� _�;

!a
K � dva�

iv2

2
sinh2

������
v2

p
dvb

�
�ba�

vbva

v2

�
; !ab

M � �cosh2
������
v2

p
�1�

�vadvb�vbdva�

2v2 ; !R � 0: (2.5)

The two sets of coordinate basis differentials dx	 and
!a are related to each other through the vierbein e	

a

!a � dx	e	a: (2.6)

From Eq. (2.5) this yields, recalling d � dx	@	,

e	
a � ��	

b � i���b@
$
	
��� ��b@

$
	
����

�
�b

a

� �cosh2
������
v2

p
� 1�

vbv
a

v2

�

�
sinh2

������
v2

p

������
v2

p va@	��� i���� �� ����: (2.7)

Under a G-transformation the vierbein transforms with one
world index and one tangent space (structure group) index
as

e0	 � G�1�
	 e�bLb

a: (2.8)

Using Eq. (2.3), G�
	 � @x0	=@x� and La

b is the D � 4
Lorentz transformation corresponding to h and has deter-
minant one, detL � 1. The leading term in the N � 1, D �
5 super-Poincaré invariant action is given by the ‘‘cosmo-
logical constant’’ term

� � ��
Z
d4x dete; (2.9)

with � denoting the brane tension parameter. The
Lagrangian is the constant brane tension integrated over
the hyperarea of the brane. The action is invariant due to
Eq. (2.8) and since d4x0 � d4x detG and detL � 1.

The fully covariant vierbein, e	a, can be factorized into
the product of the partially covariant Akulov-Volkov vier-
bein ê	

a,

ê 	
a � �	a � i���a@

$
	
��� ��a@

$
	
���; (2.10)

and the Nambu-Goto vierbein Nb
a,

Nb
a � �b

a � �cosh2
������
v2

p
� 1�

vbva

v2

�
sinh2

������
v2

p

������
v2

p vaD̂b��� i���� �� ����; (2.11)

where the partial covariant Akulov-Volkov derivative is
defined by D̂a � ê�1	

a @	,

e	a � ê	bNb
a: (2.12)

Thus, the invariant action involves the product of the
Akulov-Volkov determinant and the determinant of the
Nambu-Goto vierbein, as in Eq. (1.1). The latter can be
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evaluated to yield

detN � cosh2
������
v2

p �
1�

tanh2
������
v2

p

������
v2

p vaD̂a��� i���� �� ����
�
:

(2.13)

The vector field va associated with the broken D � 5
Lorentz transformations appears in the action without any
derivatives. Hence, it is an auxiliary field and can be
eliminated by means of its equation of motion. Equiva-
lently, the Maurer-Cartan one-form associated with the
broken translation generator Z can be G-covariantly set
to zero. This leads to the elimination of va via the ‘‘inverse
Higgs mechanism’’ [17]. Expressing the !Z one-form in
terms of the partially covariant one-form !̂a � dx	ê	a �

dxa � i���ad
$ �����ad

$ ��� (hence d � dx	@	 � !̂aD̂a)
gives

!Z � !̂a cosh2
������
v2

p �
D̂a��� i���� �� ����

�
tanh2

������
v2

p

������
v2

p va

�
: (2.14)

Setting this to zero results in the ‘‘inverse Higgs mecha-
nism’’

va
tanh2

������
v2

p

������
v2

p � D̂a��� i���� �� ����: (2.15)

Substituting this into the determinant of the Nambu-Goto
vierbein yields the SUSY generalization of the Nambu-
Goto Lagrangian

detN �
1

cosh2
������
v2

p �

������������������������������������������������������������
1� �D̂a��� i���� �� �����2

q
:

(2.16)

Hence the complete (G-invariant) N � 1, D � 5 super-
Poincaré invariant Akulov-Volkov-Nambu-Goto action
for a non-BPS p � 3 brane embedded in N � 1, D � 5
superspace is given by

� � ��
Z
d4x dete � ��

Z
d4x detê detN

� ��
Z
d4x

�
det

�
�	a � i��@

$
	�a ��� �@

$
	�a ���

�

�

������������������������������������������������������������
1� �D̂a��� i���� �� �����2

q �
: (2.17)

III. THE DUAL TENSOR GAUGE THEORY

Returning to action (1.1) and Eq. (2.13) for the Nambu-
Goto determinant with all fields independent, the � equa-
tion of motion yields the Bianchi identity for the dual field
strength vector F	 (see Ivanov, et al. in [9])

0 �
��
��

� �@	F
	; (3.1)

where

F	 � �detê��vaê�1	
a �

sinh2
������
v2

p

������
v2

p : (3.2)

Since the dual of F	 is closed, F	 can be (locally) ex-
pressed as

F	 � �	���@�B��; (3.3)

where the two-form B	� is the tensor gauge potential. The
Lagrangian can be expressed as

dete � detê detN

� detê cosh2
������
v2

p
� F	@	��� i���� �� ����: (3.4)

Exploiting the definition of F	 further so that

vavb

v2
�

�F	ê	
a��F�ê�

b�

�Fê�2
(3.5)

results in

cosh2
������
v2

p
�

������������������������������
1�

�Fê�2

�detê�2

�s
: (3.6)

Integrating Eq. (3.4) over the world volume after having
substituted Eq. (3.6) and integrating by parts in order to set
@	F	 � 0, the tensor gauge theory action dual to the non-
BPS p � 3 brane Nambu-Goto-Akulov-Volkov action is
obtained

� � ��
Z
d4x

�������������������������������������������
��detĝ� � F	ĝ	�F�

q
; (3.7)

where the Akulov-Volkov metric is given by
ĝ	� � ê	a�abê�b.

From the definition of the dual field strength F	 and its
expression in terms of the tensor gauge potential, it is a
world volume vector density. Hence, it is convenient to
define the covariant field strength F	 according to

F	 �
1

detê
ĝ	�F

�: (3.8)

The dual tensor gauge theory action can then be written as

� � ��
Z
d4x

�����������������������������������������
� det�ĝ	� � F	F��

q
: (3.9)

IV. DISCUSSION

In this paper the effective action describing the dynam-
ics of the Nambu-Goldstone degrees of freedom localized
on a non-BPS p � 3 brane embedded in N � 1, D � 5
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superspace was determined by means of the coset method.
It was shown that the Nambu-Goldstone field associated
with the broken translational symmetry can be described
equivalently in terms of either a scalar field or an antisym-
metric tensor gauge potential. Besides the Nambu-
Goldstone fields associated with the broken space-time
symmetries, in principle other massless degrees of freedom
may appear in the low energy effective action, depending
on the details of the underlying model. For example, addi-
tional massless scalar fields occur in configurations of
multiple noninteracting parallel domain walls, where mod-
uli correspond to distances between pairs of walls. These
non-Nambu-Goldstone massless modes likely appear as
‘‘matter’’ fields coupled to the Nambu-Goldstone modes
in terms of the coset construction of the effective low
energy action. In addition, if in a particular underlying
model some internal global symmetries are broken by a
domain wall configuration, corresponding Nambu-
Goldstone modes appear in the effective action. In fact,
this latter situation is often realized by solitons in non-
Abelian gauge theories (see for instance [5,21]). In this
case, each such Nambu-Goldstone boson corresponds to a
broken non-Abelian global internal symmetry. The dual
action, therefore, is expected to contain a non-Abelian
tensor (as was discussed by Freedman and Townsend in
[18]), in addition to the Abelian tensor associated with the
broken translational symmetry. Other directions in which
the coset construction can be extended are to include more
than the minimal number of supersymmetry generators or
to allow for a higher number of soliton codimensions. Such
generalizations would be of importance in order to con-
struct the low energy action of massless degrees of freedom
in many interesting models. For instance, a non-BPS vor-
tex with codimension two was recently found in a theory
with eight supercharges [22]. Since the low energy effec-
tive action of this model contains Nambu-Goldstone bo-
sons associated with internal global non-Abelian
symmetries broken by the vortex, its dual action is antici-
pated to contain a non-Abelian tensor in addition to
Abelian tensors, as discussed before.
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APPENDIX: N � 1, D � 5 SUPER-POINCARÉ
ALGEBRA

The D � 5 Poincaré symmetry generators consist of the
energy-momentum operator PM and the angular-

momentum operator MMN, with M;N � 0, 1, 2, 3, 4,
which obey the algebra (the D � 5 metric is taken to be
�MN � ��;�;�;�;��)

�MMN;MRS� � �i��MRMNS � �MSMNR � �NRMMR

� �NRMMS�;

�MMN;PL� � i�PM�NL � PN�ML�;

�PM; PN� � 0: (A1)

The N � 1, D � 5 super-Poincaré algebra has in addition
the four component complex (Dirac) supersymmetry
charges Qa and �Qa � Qy

b+
0
ba and the R-symmetry auto-

morphism generator, R. The nonvanishing commutators
are

fQa; �Qbg � �2+M
abPM; �MMN;Qa� � �

1

2
+MN
ab Qb;

�R;Qa� � �Qa; �R; �Qa� � � �Qa: (A2)

The non-BPS domain wall breaks the N � 1, D � 5
super-Poincaré symmetry group G to the D � 4 Poincaré
symmetry and R symmetry groups denoted H �
ISO�1; 3� � R. The N � 1, D � 5 super-Poincaré charges
can be written in terms of their unbroken SO(1,3) Lorentz
group content. The unbroken symmetry group H is gen-
erated by the charges P	, with 	 � 0, 1, 2, 3, correspond-
ing to translations in D � 4 space-time of the world
volume, M	�, with 	; � � 0, 1, 2, 3, corresponding to D �
4 world volume Lorentz transformations and R corre-
sponding to chiral R symmetry transformations. The re-
maining charges generating elements of G=H are the
broken N � 1, D � 5 super-Poincaré charges. Z � P4

generates translations in the broken fifth dimension and
acts as the central charge in the equivalent extended N � 2,
D � 4 SUSY algebra, K	 � 2M4	 generates the broken
D � 5 Lorentz transformations. The eight broken N � 1,
D � 5 (N � 2, D � 4) supersymmetry generators are
complex 4 component (Dirac) spinors, Qa and �Qa. The
Dirac spinors can be written in the Weyl representation in
terms of the two component N � 2, D � 4 complex Weyl
spinor charges, Q�, �Q _�, S�, and �S _�, as

Q a �
Q�
i �S _�


 �
; �Qa � ��iS� �Q _�� (A3)

(The D � 5 Dirac matrices are given in terms of the D � 4
Dirac matrices, in the Weyl representation,
+M � �+	; i+5�).

In terms of these operators the N � 1, D � 5 super-
Poincaré algebra of Eqs. (A1) and (A2) becomes the
centrally extended N � 2, D � 4 SUSY algebra given by
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�M	�;M��� � �i��	�M�� � �	�M�� � ���M	�� ���M	��;

�M	�; P�� � i�P	��� � P��	��; �M	�;K�� � i�K	��� � K��	��;

�Z;K	� � 2iP	; �P	;K�� � 2i�	�Z; �K	;K�� � 4iM	�;

fQ�; �Q _�g � 2�	
� _�P	 � fS�; �S _�g;

�M	�;Q�� � �
1

2
�	�,
� Q,; �M	�; �Q _�� � �

1

2
��	�

_� _,
�Q _,;

�M	�; S�� � �
1

2
�	�,
� S,; �M	�; �S _�� � �

1

2
��	�

_� _,
�S _,;

fQ�; S,g � �2��,Z; f �Q _�; �S _,g � �2� _� _,Z;

�K	;Q�� � �i�	
� _�

�S _�; �K	; �Q _�� � �i ��	 _��S�;

�K	S�� � �i�	
� _�

�Q _�; �K	; �S _�� � �i ��	 _��Q�;

�R;Q�� � �Q�; �R; �Q _�� � � �Q _�;

�R; S�� � �S�; �R; �S _�� � � �S _�

(A4)
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