55 research outputs found

    Systematic Bias In Baroclinic Energy Estimates In Shelf Seas

    Get PDF
    A simple model of an internal wave advected by an oscillating barotropic flow suggests flaws in standard approaches to estimating properties of the internal tide. When the M2 barotropic tidal current amplitude is of similar size to the phase speed of the M2 baroclinic tide, spectral and harmonic analysis techniques lead to erroneous estimates of the amplitude, phase, and energy in the M2 internal tide. In general, harmonic fits and bandpass or low-pass filters that attempt to isolate the lowest M2 harmonic significantly underestimate the strength of M2 baroclinic energy fluxes in shelf seas. Baroclinic energy flux estimates may show artificial spatial variability, giving the illusion of sources and sinks of energy where none are actually present. Analysis of previously published estimates of baroclinic energy fluxes in the Celtic Sea suggests this mechanism may lead to values being 25%–60% too low

    Baroclinic energy flux at the continental shelf edge modified by wind-mixing

    Get PDF
    Temperature and current measurements from two moorings onshore of the Celtic Sea shelf break, a well-known hot spot for tidal energy conversion, show the impact of passing summer storms on the baroclinic wavefield. Wind-driven vertical mixing changed stratification to permit an increased on-shelf energy transport, and baroclinic energy in the semidiurnal band appeared at the moorings 1–4 days after the storm mixed the upper 50 m of the water column. The timing of the maximum in the baroclinic energy flux is consistent with the propagation of the semidiurnal internal tide from generation sites at the shelf break to the moorings 40 km away. Also, the ∌3 day duration of the peak in M2 baroclinic energy flux at the moorings corresponds to the restratification time scale following the first storm

    Preface: Developments in the science and history of tides

    Get PDF
    This special issue marks the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI), one of a number of important scientific developments in 1919. The preface gives a brief history of how the LTI came about and the roles of its first two directors, Joseph Proudman and Arthur Doodson. It also gives a short overview of the research on tides at the LTI through the years. Summaries are given of the 26 papers in the special issue. It will be seen that the topics of many of them could be thought of as providing a continuation of the research first undertaken at the LTI. Altogether, they provide an interesting snapshot of work on tides now being made by groups around the world

    Scale-dependent spatial patterns in benthic communities around a tropical island seascape

    Get PDF
    Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub-tidally among seascape ecologists. Much of our current understanding of the processes driving marine community patterns, particularly in the tropics, has come from small-scale, spatially-discrete data that are often not representative of the broader seascape. Here we expand the spatial extent of seascape ecology studies and combine spatially-expansive in situ digital imagery, oceanographic measurements, spatial statistics, and predictive modeling to test whether predictable patterns emerge between coral reef benthic competitors across scales in response to intra-island gradients in physical drivers. We do this around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis Island) that lacks the confounding effects of direct human impacts. We show, for the first time, that competing benthic groups demonstrate predictable scaling patterns of organization, with positive autocorrelation in the cover of each group at scales \u3c ~1 km. Moreover, we show how gradients in subsurface temperature and surface wave power drive spatially-abrupt transition points in group dominance, explaining 48–84% of the overall variation in benthic cover around the island. Along the western coast, we documented ten times more sub-surface cooling-hours than any other part of the coastline, with events typically resulting in a drop of 1–4°C over a period of \u3c 5 h. These high frequency temperature fluctuations are indicative of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO 2 + NO 3 ) that promotes hard coral dominance around 44% of the island\u27s perimeter. Our findings show that, in the absence of confounding direct human impacts, the spatial organization of coral reef benthic competitors are predictable and somewhat bounded across the seascape by concurrent gradients in physical drivers

    Deep-ocean mixing driven by small-scale internal tides

    Get PDF
    Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate—the relative importance of their local versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models

    Long-term Earth-Moon evolution with high-level orbit and ocean tide models

    Get PDF
    Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation

    Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid‐ocean Ridges

    Get PDF
    Diapycnal mixing of nutrients from the thermocline to the surface sunlit ocean is thought to be relatively weak in the world's subtropical gyres as energy inputs from winds are generally low. The interaction of internal tides with rough topography enhances diapycnal mixing, yet the role of tidally induced diapycnal mixing in sustaining nutrient supply to the surface subtropical ocean remains relatively unexplored. During a field campaign in the North Atlantic subtropical gyre, we tested whether tidal interactions with topography enhance diapycnal nitrate fluxes in the upper ocean. We measured an order of magnitude increase in diapycnal nitrate fluxes to the deep chlorophyll maximum (DCM) over the Mid‐Atlantic Ridge compared to the adjacent deep ocean. Internal tides drive this enhancement, with diapycnal nitrate supply to the DCM increasing by a factor of 8 between neap and spring tides. Using a global tidal dissipation database, we find that this spring‐neap enhancement in diapycnal nitrate fluxes is widespread over ridges and seamounts. Mid‐ocean ridges therefore play an important role in sustaining the nutrient supply to the DCM, and these findings may have important implications in a warming global ocean

    Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study)

    Get PDF
    ©2017. American Geophysical Union. The tides are a major source of the kinetic energy supporting turbulent mixing in the global oceans. The prime mechanism for the transfer of tidal energy to turbulent mixing results from the interaction between topography and stratified tidal flow, leading to the generation of freely propagating internal waves at the period of the forcing tide. However, poleward of the critical latitude (where the period of the principal tidal constituent exceeds the local inertial period), the action of the Coriolis force precludes the development of freely propagating linear internal tides. Here we focus on a region of sloping topography, poleward of the critical latitude, where there is significant conversion of tidal energy and the flow is supercritical (Froude number, Fr > 1). A high-resolution nonlinear modeling study demonstrates the key role of tidally generated lee waves and supercritical flow in the transfer of energy from the barotropic tide to internal waves in these high-latitude regions. Time series of flow and water column structure from the region of interest show internal waves with characteristics consistent with those predicted by the model, and concurrent microstructure dissipation measurements show significant levels of mixing associated with these internal waves. The results suggest that tidally generated lee waves are a key mechanism for the transfer of energy from the tide to turbulence poleward of the critical latitude
    • 

    corecore