205 research outputs found

    Discovery of a Non-Nucleoside SETD2 Methyltransferase Inhibitor against Acute Myeloid Leukemia

    Get PDF
    Histone methyltransferases (HMTs) have attracted considerable attention as potential targets for pharmaceutical intervention in various malignant diseases. These enzymes are known for introducing methyl marks at specific locations of histone proteins, creating a complex system that regulates epigenetic control of gene expression and cell differentiation. Here, we describe the identification of first-generation cell-permeable non-nucleoside type inhibitors of SETD2, the only mammalian HMT that is able to tri-methylate the K36 residue of histone H3. By generating the epigenetic mark H3K36me3, SETD2 is involved in the progression of acute myeloid leukemia. We developed a structure-based virtual screening protocol that was first validated in retrospective studies. Next, prospective screening was performed on a large library of commercially available compounds. Experimental validation of 22 virtual hits led to the discovery of three compounds that showed dose-dependent inhibition of the enzymatic activity of SETD2. Compound C13 effectively blocked the proliferation of two acute myeloid leukemia (AML) cell lines with MLL rearrangements and led to decreased H3K36me3 levels, prioritizing this chemotype as a viable chemical starting point for drug discovery projects

    The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98 -rearranged AML

    Get PDF
    Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin–MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL–Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors

    The MLL-Menin Interaction is a Therapeutic Vulnerability in <em>NUP98</em>-rearranged AML

    Get PDF
    \ua9 2023 Wolters Kluwer Health. All rights reserved. Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors

    STAT3β is a tumor suppressor in acute myeloid leukemia

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) exists in 2 alternatively spliced isoforms, STAT3α and STAT3β. Although truncated STAT3β was originally postulated to act as a dominant-negative form of STAT3α, it has been shown to have various STAT3α-independent regulatory functions. Recently, STAT3β gained attention as a powerful antitumorigenic molecule in cancer. Deregulated STAT3 signaling is often found in acute myeloid leukemia (AML); however, the role of STAT3β in AML remains elusive. Therefore, we analyzed the STAT3β/α messenger RNA (mRNA) expression ratio in AML patients, where we observed that a higher STAT3β/α mRNA ratio correlated with a favorable prognosis and increased overall survival. To gain better understanding of the function of STAT3β in AML, we engineered a transgenic mouse allowing for balanced Stat3β expression. Transgenic Stat3β expression resulted in decelerated disease progression and extended survival in PTEN- and MLL-AF9-dependent AML mouse models. Our findings further suggest that the antitumorigenic function of STAT3β depends on the tumor-intrinsic regulation of a small set of significantly up- and downregulated genes, identified via RNA sequencing. In conclusion, we demonstrate that STAT3β plays an essential tumor-suppressive role in AML

    SENTINDO O MUNDO PELAS MÃOS: UMA EXPERIÊNCIA NO COMPONENTE DE CORPOREIDADE E MOVIMENTO

    Get PDF
    O objetivo do trabalho foi resgatar por meio da Caixa Secreta a sensibilidade por meio do sentido tato e proporcionar a vivência que nossos colegasdeficientes visuais tem, promovendo uma maior empatia entre os colegas de graduação. A proposto a criação da Caixa Secreta desenvolveu-se para aelaboração da Instalação de Sentidos, trabalho final do componente curricular Corporeidade e Movimento, ministrada pela Professora Me. SandraRogéria, do curso de graduação em Educação Física bacharelado da Unoesc em Chapecó. No qual os indivíduos deveriam colocar as mãos dentroda caixa, e apenas com elas terem a experiência de reconhecer ou de conhecer um objeto, uma textura, uma temperatura, entre outros

    Delivery of Antibody Mimics into Mammalian Cells via Anthrax Toxin Protective Antigen

    Get PDF
    Antibody mimics have significant scientific and therapeutic utility for the disruption of protein–protein interactions inside cells; however, their delivery to the cell cytosol remains a major challenge. Here we show that protective antigen (PA), a component of anthrax toxin, efficiently transports commonly used antibody mimics to the cytosol of mammalian cells when conjugated to the N-terminal domain of LF (LFN). In contrast, a cell-penetrating peptide (CPP) was not able to deliver any of these antibody mimics into the cell cytosol. The refolding and binding of a transported tandem monobody to Bcr-Abl (its protein target) in chronic myeloid leukemia cells were confirmed by co-immunoprecipitation. We also observed inhibition of Bcr-Abl kinase activity and induction of apoptosis caused by the monobody. In a separate case, we show disruption of key interactions in the MAPK signaling pathway after PA-mediated delivery of an affibody binder that targets hRaf-1. We show for the first time that PA can deliver bioactive antibody mimics to disrupt intracellular protein–protein interactions. This technology adds a useful tool to expand the applications of these modern agents to the intracellular milieu.Massachusetts Institute of Technology (Startup funds)Massachusetts Institute of Technology (MIT Reed Fund)National Science Foundation (U.S.) (NSF CAREER Award (CHE-1351807))Damon Runyon Cancer Research Foundation (award)National Science Foundation (U.S.) (Graduate Research Fellowship
    corecore