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Abstract: Histone methyltransferases (HMTs) have attracted considerable attention as potential
targets for pharmaceutical intervention in various malignant diseases. These enzymes are known
for introducing methyl marks at specific locations of histone proteins, creating a complex system
that regulates epigenetic control of gene expression and cell differentiation. Here, we describe
the identification of first-generation cell-permeable non-nucleoside type inhibitors of SETD2, the
only mammalian HMT that is able to tri-methylate the K36 residue of histone H3. By generating
the epigenetic mark H3K36me3, SETD?2 is involved in the progression of acute myeloid leukemia.
We developed a structure-based virtual screening protocol that was first validated in retrospective
studies. Next, prospective screening was performed on a large library of commercially available
compounds. Experimental validation of 22 virtual hits led to the discovery of three compounds that
showed dose-dependent inhibition of the enzymatic activity of SETD2. Compound C13 effectively
blocked the proliferation of two acute myeloid leukemia (AML) cell lines with MLL rearrangements
and led to decreased H3K36me3 levels, prioritizing this chemotype as a viable chemical starting
point for drug discovery projects.

Keywords: histone methyltransferase; AML; SETD2 inhibitor; virtual screening

1. Introduction

In eukaryotic cells, histone proteins play instrumental roles in the packaging of DNA
inside the nucleus. The four major histones (H2a, H2b, H3, and H4) form a disc-shaped
octameric complex, providing a structural framework for binding of the DNA double helix
to form chromatin [1]. In addition to this role, the side chains of histone proteins are subject
to highly specific post-translational modifications, including methylation, acetylation,
and others. These functional groups are added to histone tails by specific enzymes and
serve as epigenetic marks, which participate in the regulation of gene expression. The
presence or absence of distinct histone modifications can effect a change between the relaxed
(euchromatin) and condensed (heterochromatin) states of chromatin [1]. In mammalian
cells, SET domain containing 2 (SETD2) is the only known lysine methyltransferase (KMT)
that is able to tri-methylate the K36 lysine side chain of the H3 protein, resulting in the
H3K36me3 epigenetic mark [2]. As most other KMT proteins, SETD2 uses S-adenosyl
methionine (SAM) as a cofactor and source of electrophilic methyl groups. By binding to
SETD2, the e-amino group of the H3K36 lysine residue comes in close proximity to the
carbon atom of the methylsulfonium cation, which has a partial positive charge in the
active site, enabling an SN 2-type nucleophilic attack [3].

The H3K36me3 mark was implicated in various processes, including transcriptional
elongation, alternative splicing, and DNA repair [4]. Inappropriate expression of SETD2
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and resulting errors in H3K36 trimethylation have been linked to various types of malignan-
cies [5], for example human breast cancer [6], clear cell renal cell carcinoma (cRCC) [7], and
systemic mastocytosis (SM) [8]. Furthermore, SETD?2 is highly expressed in leukemia [9].
In relapsed pediatric acute lymphoblastic leukemia (ALL) patients, SETD2 mutations were
found at an increased frequency, highlighting a possible role of SETD2 in chemotherapy
resistance [10]. In line with that, the heterozygous loss of SETD2 caused resistance to
DNA-damaging agents in cell lines and mouse models of leukemia [11].

We recently reported that the expression and activity of SETD2 is crucial for the pro-
gression of acute myeloid leukemia (AML) with MLL rearrangements. The downregulation
of SETD2 inhibited the development and progression of MLL-rearranged AML in vitro
and in vivo and led to a reduction in both H3K36me3 and H3K79me?2 levels. Addition-
ally, loss of SETD2 induced hypersensitivity against the DOTIL inhibitor pinometostat
(EPZ-5676; currently in phase 1 and 2 clinical trials, see NCT03701295 and NCT03724084 at
https:/ /clinicaltrials.gov, accessed on 1 August 2021) in MLL-rearranged AML cells [12].
Currently, the only known small-molecule inhibitors of SETD2 are sinefungin and its syn-
thetic nucleoside analogues. Sinefungin (SNF) is a naturally occurring compound isolated
from bacteria of the Streptomyces genus [13], which was described as a non-selective in-
hibitor of various SET-domain containing protein lysine methyltransferases (PKMTs) [14].
Notably, sinefungin is a close analog of S-adenosyl-methionine (having a primary amine
group in place of the S-methyl group, Figure 1). A series of sinefungin analogs, in which
the amine group was extended with apolar sidechains, was reported to inhibit SETD2 at
a low micromolar concentration in vitro [3,15] (these are summarized in the Supplementary
Materials, Section S1), with the N-isobutyl derivative being the most potent with an ICsg
value of 0.29 uM.
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Figure 1. The 2D structures of S-adenosyl-methionine (SAM) (left) and sinefungin (SNF) (right).
Substitution at the R group yields sinefungin analog SETD2 inhibitors with micromolar potencies (in
the parent compound, the amine is unsubstituted).

The clinical relevance of SETD2 in cancer, along with the lack of further inhibitor
chemotypes and the general ADME /bioavailability concerns around nucleoside analogs
(such as sinefungin), prompted us to launch a virtual screening campaign with the aim
of identifying small molecule inhibitors of SETD2 with novel chemical scaffolds. Such
compounds could fulfill a scientific and clinical need by serving as both chemical probes
for target validation and target engagement studies, and as initial hits for a drug discov-
ery campaign. The SETD2 X-ray structures with sinefungin analogs bound to the SAM
binding site provided ample structural data for our efforts to develop a virtual screening
protocol. To avoid restricting the explored chemical space, while keeping the computa-
tional demands at a manageable scale, knowledge-based pre-screening steps (substructure
filtering and pharmacophore screening) were introduced to the workflow prior to ligand
docking. This approach identified three new compounds with experimentally confirmed
SETD2 inhibitory activities, one of which also effectively reduced H3K36me3 levels and
blocked the proliferation of the SETD2-dependent AML cell lines. The compound C13
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contains a non-nucleoside core scaffold and can be considered a potential starting point
for optimized SETD2 inhibitors.

2. Results
2.1. Virtual Screening Workflow and Retrospective Validation

To identify the new chemotypes of SETD2 inhibitors, we set out to conduct a structure-
based virtual screening campaign on the Mcule database [16], with nearly six million
commercially available compounds, using ligand docking. To avoid the high computa-
tional demand of docking all these compounds, we introduced pharmacophore screen-
ing as a computationally less expensive pre-filtering step into the workflow. This was
implemented based on the structural and protein-ligand interaction characteristics of
the existing SETD2 inhibitors, i.e., sinefungin analogs. Examining the X-ray structure
of isobutyl-sinefungin (the most potent SETD2 inhibitor with an ICsy value of 0.29 uM,
Figure 2A), we observed that in addition to the H-bond network that anchors the adenine
core, further H-bonds and cation-m interactions are provided by the ornithine unit and
the charged secondary amine (and for SAM, the methylsulfonium cation) to stabilize the
position of the apolar sidechain toward the hydrophobic channel of the enzyme. On the
level of pharmacophores, this translates to a particularly rich set of pharmacophoric fea-
tures (Figure S1). From these, a consensus pharmacophore model was derived and applied
during the pre-screening step (Figure 2B). The pharmacophore model contained the key
interacting features of the adenine core, as well as two positively charged groups and
was capable of retrieving the nine known SETD2 inhibitors from our training set (nine
known inhibitors with 450 decoy compounds), with a minimal number of false positives
(Supplementary Materials, Section S2). To note, the pharmacophore model boasts an ex-
cellent performance, as expressed by receiver operating characteristic (ROC) enrichments
of 40 and 28 at 1% and 2% false positive rates, respectively [17]; an area under the ROC
curve (AUC) value of 0.97 and a Boltzmann-Enhanced Discrimination of ROC (BEDROC)
value of 0.702.

Figure 2. (A) Isobutyl-sinefungin (iBu-SNF, PDB:5LSY [15]) in the SAM-binding pocket of SETD2. (B) Consensus pharma-
cophore model overlaid on the structure of iBu-SNF.

For docking, eight PDB (Protein Data Bank) structures were initially considered and
two of them (5JLE [18] and 5LSY [15]) were finally selected based on testing a large number
of configurations in terms of the protein structures and docking constraints to be used
(Supplementary Materials, Section S3). The docking protocol retrieved all nine known
inhibitors from the above-mentioned training set with excellent early enrichment factors
(size-independent ROC enrichment factors of 80 and 44 at 1% and 2% false positive rate,
respectively [17]) and an area under the ROC curve (AUC) value of 0.97, which was further
increased to 0.99 by the application of pharmacophore-based pre-screening; BEDROC
values were 0.816 and 0.854, respectively.
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2.2. Prospective Screening and Hit Selection

Next, we set out to apply the assembled virtual screening workflow to identify new
SETD?2 inhibitors from a large supplier database (Mcule, ca. 6 million compounds) in
a prospective fashion. While pharmacophore screening presents a more economical al-
ternative to docking in terms of the computational demand, it requires the generation
of a conformational ensemble for each molecule prior to screening. For 5-6 millions of
compounds, this would generate data in the terabyte range. To reduce this, we introduced
a permissive substructure filter as an additional pre-screening step. It utilized a generic
query substructure that enabled us to keep any molecule with at least a minimal structural
resemblance to the natural cofactor SAM and sinefungin derivatives, i.e., those that contain
an aromatic core and an amine group, separated by a linker region of at least five atoms
(Supplementary Materials, Section S4).

The virtual screening was carried out in a stepwise fashion; the exact number of
compounds at each step is summarized in Figure 3. The starting database of about 6 million
compounds was cut down first by about 0.65 million by excluding the compounds with
reactive groups or Pan Assay Interference Compounds (PAINS) [19]. Next, the permissive
substructure filter retained ca. 355,000 compounds, of which 30,047 were able to form
at least one conformational state that fit to the requirements of the pharmacophore filter.
These were docked into the appropriate receptor grids with Glide Standard Precision (SP)
docking, resulting in 9781 compounds that were successfully docked into at least one of
the receptor grids.

Mecule library
5,279,725 PAINS filtering
354,966 Substructure filtering X (x4) A(a)
30,047 Pharmacophore screening N A
n
9,781 Ligand docking
. . . X
86 Best hits according to docking
55 Visual inspection

22 Clustering, experimental testing

Figure 3. (A) Virtual screening workflow, with the number of compounds at each step indicated.
(B) Generic substructure filter used for pre-screening. A symbolizes any non-hydrogen atom,
(a) means that the atom is in an aromatic bond, and (X4) implies an sp> hybridization state. X is
either H or C(X4), allowing for (but not requiring) an arbitrary sidechain. The linker length is defined
as 4 < n <10 (this allows for linear or ring-containing linkers as well).

To select compounds for purchasing and experimental testing, we considered two criteria:
in addition to the 50 compounds with the best docking scores, 50 other compounds were
kept based on the fact that they exhibited similar binding poses to the three most potent
inhibitors (based on their Tanimoto similarities to a consensus interaction fingerprint [20]).
Due to overlaps, this resulted in 86 unique compounds, whose docking poses were visually
inspected in detail, checking for the main interacting features such as an adenine-mimicking
core and a positively charged amine at the active center. The resulting 55 ligands were
clustered and 22 representative compounds were chosen as virtual hits and purchased for
experimental testing.

2.3. Experimental Hit Confirmation and Characterization

The 22 purchased virtual hits were first assayed in vitro to evaluate their inhibitory
effect in a chemiluminescence-based SETD2 enzyme inhibition assay (for details, see Sup-
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plementary Materials, Section S5 and Figure S4A). In this assay, the SETD2-specific H3K36
tri-methylation is measured with an anti-H3K36me3 antibody and a recombinant SETD2
protein. As a control, we used sinefungin, which fully inhibited the enzymatic activity of
SETD2 at a concentration of 2 mM (Figure 54B). The compounds were primarily screened in
singlets at a concentration of 100 pM (Figure S4B). In a second round, 17 compounds were
retested in duplicates, identifying 12 compounds that inhibited the enzymatic function of
SETD2 by at least 50% (Figure S4C). These 12 preferred compounds were selected for ICs
measurements in duplicates.

The three virtual hits C13, C17, and C19 inhibited SETD2 activity in a dose-dependent
manner, with ICsq values in the high micromolar range. For compound C17, 50% inhibition
was not reached within its window of solubility (1 mM assay concentration). Predicted
binding poses for these hits are summarized in Figure 4 (ICsy curves are included in
Figure S5). Notably, the three compounds contain three different core scaffolds, and based
on their predicted binding poses, all three are strongly anchored to the adenine binding
pocket by three alternating H bonds (acceptor-donor-acceptor motif), nominating them as
new SETD2 inhibitor scaffolds that can be utilized for inhibitor design.

~ )

( ( Y - \> \
1C, =210 uM S IC>1mMm ( IC5, = 300 uM

Figure 4. Predicted binding poses of the hit compounds C13 (A), C17 (B), and C19 (C).

Finally, we aimed to assess the inhibitory effects of the three confirmed hits in cells.
We used MOLM-13 and MV4-11 cells, which represent two AML cell lines harboring MLL
rearrangements together with the FLT3-ITD mutations, as we previously demonstrated
that those cell lines are sensitive to SETD2 perturbation [12].

Interestingly, only C13 induced a dose-dependent anti-proliferative effect in the two
cell lines (Figure 5A, ICsg = 25 uM), thus nominating it as our primary hit compound. The
lack of cellular efficiency found for C17 and C19 suggests that these chemotypes need
further physicochemical optimization to achieve appropriate solubility and permeability.

Next, we aimed to further characterize the potential of C13 to inhibit SETD2-driven
cell proliferation. Three different concentrations of C13 (ICjg = 1.5 uM, ICyp = 6 uM, and
ICs5p = 25 uM) inhibited the proliferation of both MOLM-13 and MV4-11 cell lines in these
long-term culture experiments (Figure 5B). Finally, we evaluated whether C13 is able to
inhibit SETD2 activity in cells. We treated MOLM-13 cells for 48 h with 100 uM C13
and determined H3K36me3 levels via Western blotting (Figure 5C). We found that C13
treatment induced a specific downregulation of H3K36me3 levels, while H3K36me2 levels
remained unaffected. This result confirms the target engagement of C13 inhibiting the
KMT activity of SETD2 in a cellular context [21].

Meanwhile, we noticed that the observed SETD2 inhibitory activity of C13 (ICsy = 210 uM)
is weaker than its cellular potency (ICsg = 25 pM), which hints at the possibility that C13
exerts its cellular effect through the inhibition of more histone methyltransferases, similar
in structure to SETD2. Although we did not have access to further methyltransferase assays,
we examined this possibility by a brief docking study against the available PDB structures
of 15 other methyltransferases (Supplementary Materials, Section S7). This analysis has
highlighted six histone methyltransferases: NSD1, ASH1L, SETMAR, EHMT2, SUV420H]1,
and SMYD?2, as further potential targets.
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Figure 5. The confirmed hit compound C13 inhibits the proliferation of leukemia cell lines and inhibits the enzymatic activity
of SETD2 in cells. (A) Dose-response curves of MOLM-13 and MV4-11 cells treated for 5 days with different concentrations of
C13, resulting in an ICs( value of 25 uM. (B) Proliferation assay of AML cell lines treated with three different concentrations
of C13 and DMSO as control. Cells were treated every 48 or 72 h, and cell counts were determined in regular intervals;
ICyp = 1.5 uM, ICyg = 6 uM, ICs5¢ = 25 uM. (C) Western blot analysis of MOLM-13 cells treated for 48 h with 100 uM C13 or
DMSO. Membranes were incubated with antibodies against H3K36me3 and H3K36me2. Total H3 was used as a loading
control. **p < 0.01, *** p < 0.001, *** p < 0.0001.

In summary, our validation experiments indicate that C13 is a non-nucleoside SETD2
inhibitor with reasonable cellular potency that nominates this chemotype for further
optimization as a new treatment option for acute myeloid leukemia.

3. Discussion

Our recent findings have provided ample evidence for the role of SETD2 in the
progression of acute myeloid leukemia (AML) with MLL rearrangements [12]. Since there
were limited research efforts for targeting SETD2 so far, the only currently known small-
molecule SETD2 inhibitors are sinefungin and its N-alkylated synthetic analogues [15]. In
agreement with the hydrophobic character of the histone-binding channel of SETD?2, it
was observed that a hydroxyl group in the alkyl chain drastically decreased the inhibitory
activity. However, as sinefungin is not cell-permeable, it cannot be used for cellular studies.
It is worth noting that SETD2 inhibition also generated interest in the pharma sector, since
Epizyme (now part of Genentech) reported a potent SETD2 inhibitor with a yet-undisclosed
structure [22].

Given the relevance of SETD?2 in cancer, we set out to identify new non-nucleoside
SETD?2 inhibitor compounds by virtual screening. To that end, we assembled a computa-
tionally efficient, stepwise screening protocol that employs multiple concepts and validated
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it against the available set of known SETD2 inhibitors. After using the protocol to prospec-
tively screen a large supplier database, we tested 22 virtual hits, three of which inhibited
SETD?2 in vitro in a concentration-dependent manner. Notably, the three confirmed hits
contain three different, new, non-nucleoside SETD2 inhibitor scaffolds, which could be
utilized for further medicinal chemistry efforts. The hits were further pursued to assess
their inhibitory activities in the leukemia cell lines MOLM-13 and MV4-11. This revealed
that the hit compound C13 effectively blocked SETD2-mediated proliferation of MLL-
rearranged AML cell lines, thereby nominating it as the primary hit compound identified
in this study. Furthermore, C13 induced the downregulation of H3K36me3 while leaving
H3K36me?2 levels unchanged, confirming SETD2 target engagement at the cellular level.
We should note that the enzymatic inhibitory activity of C13 is weaker than we had hoped
for, highlighting the need for further optimization to turn it into a potent lead compound.
On the other hand, this is the first non-nucleoside inhibitor that is suitable for cellular
studies as well (in contrast to the natural substrate that has limited cell permeability).

Altogether, compound C13 represents a promising starting point to develop spe-
cific inhibitors of SETD2. The availability of specific small-molecule inhibitors of SETD2
would serve as important chemical probes to investigate the role of SETD2 in cancer and
other diseases.

4. Materials and Methods
4.1. Datasets and Ligand Preparation

The structures and activity data of these known SETD2 inhibitors were retrieved
from primary literature mentioned above [3,15]. Fourteen X-ray structures of SETD2
with various ligands available from these publications were obtained from the Protein
Data Bank (PDB). We used the Mcule database of purchasable, in-stock compounds, con-
taining 5,936,834 entries [16]. These database operations were carried out using KNIME
(KNIME AG, Ziirich, Switzerland) [23] and Instant JChem (ChemAxon LLC: Budapest,
Hungary) [24]. The compounds with reactive groups were removed with Schrodinger
Ligfilter, while the Pan Assay Interference Compounds (PAINS) were removed with the
PAINS filters of Canvas [19]. Prior to ligand preparation, the computationally less de-
manding substructure filtering (see Supplementary Materials, Section S4) was carried
out, resulting in about 355,000 compounds to proceed with. These were prepared with
Schrodinger LigPrep (Schrodinger, LLC: New York, NY, USA), generating 3D structures to
possible tautomeric and protomeric states significantly populated in an aqueous medium
at pH =74 £ 1.5 [25,26]. As a necessity for the subsequent screening step, Schrodinger
ConfGen (Schrodinger, LLC: New York, NY, USA) was used to generate 50 conformational
states for each structure generated by the LigPrep [26,27].

4.2. Pharmacophore Screening

The E-pharmacophore module of Schrodinger’s Phase [28,29] was used to create
a pharmacophore model for each of the five PDB structures (4FMU [3], 5LSS, 5LSX, 5LSY,
and 5LT6 [15]), containing the most active (low micromolar or submicromolar) inhibitors of
SETD2, namely Pr-SNF, iBu-SNEF, Bn-SNF, and Pe-SNF, respectively, as ligands. From these,
a consensus pharmacophore model was derived based on their performance to retrieve all
nine known inhibitors from the training set consisting of: (i) the nine known inhibitors and
(if) a pool of 450 decoy compounds generated with the DUD-E server (see Supplementary
Materials, Section S2 for more detail) [30].

4.3. Ligand Docking

The fourteen X-ray structures for SETD2 available in the PDB were prepared using the
Schrodinger Prime One-step Protein Preparation interface with the default settings [25,26].
Briefly, the hydrogen atoms were added, and the most likely protonation states were
calculated for ionizable side chains at a pH of 7.4 with the PROPKA plugin [31]. Those
entries that contained a fragment of the H3 histone protein (5]]Y, 5]LB, 5V21, and 5V22 [18])
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were omitted (as none of these contained active inhibitors as ligands), while the remaining
structures were superimposed. The 5LSX [15] structure was missing crucial amino acid
residues in the binding pocket (1671-1673), and 4H12 [3] was in a closed conformation,
making it inaccessible for the substrate; these files were also excluded from further study.
Our aim was to identify representative structures from the remaining eight entries that,
when combined, show the best performance in an ensemble docking scenario, reproducing
the crystallographic docking poses of the original ligands with favorable docking scores
and the lowest root mean square distance (RMSD) values. We also validated this protocol
by performing docking on the training set described earlier, demonstrating a promising
enrichment of active compounds. Finally, two of the remaining eight structures were cho-
sen for prospective screening (for more details, see Supplementary Materials, Section S3):
5JLE [18] and 5LSY [15]. One of these structures, 5]LE, was published in a study inves-
tigating the peptide binding properties of SETD2. Interestingly, however, this specific
structure does not contain a histone peptide, but it is a binary complex of SETD2 and SAH
(S-adenosyl-homocysteine, the product of the enzyme catalyzed reaction). Similarly, 5LSY
is a binary complex between SETD2 and N-isobutyl-sinefungin, the most potent sinefungin
analog. Since both structures contain small molecules at their nucleoside binding site, they
are considered suitable for virtual screening of these small molecule libraries to identify the
new chemotypes bound to this site. The water molecules were removed from the binding
site of both structures prior to docking. This way, ligands are allowed to displace or even
replace binding-site waters that would add further gain in binding free energy. Schrodinger
Glide was used for grid generation and docking (standard precision, SP) [26,32,33].

4.4. Post-Processing and Hit Selection

The successfully docked poses were evaluated by two measures: the Glide docking
score as a crude approximation of the binding energy, and similarity to a consensus
interaction fingerprint derived from the three most active inhibitors of SETD2 (5LSY, 5LSX,
and 5LSS [15], featuring the ligands iBu-SNF, Bn-SNEF, and nPr-SNF, respectively), as
an assessment of the docking pose. At locations where the individual fingerprints of
these structures did not match, the corresponding bit was set manually based on a visual
inspection. A fingerprint was generated for each of the predicted docking poses, and
the Tanimoto similarity [20] was calculated from the consensus IFP with KNIME [23].
For the docked ligands, a high similarity value indicates an interaction pattern with the
receptor that is similar to that of the most active inhibitors. After a visual inspection, the
remaining 55 compounds were clustered based on their molecular fingerprints (hashed,
linear fingerprints in Schrodinger Canvas) [26,34] with the “average” linkage rule. The
number of clusters was determined by the Kelley criterion, but the largest cluster was
further divided into two subclusters based on the presence or absence of a distinctive
substructure ((15,5R)-3,6-diazabicyclo[3.2.2]nonane). A representative compound was
selected from each cluster for purchasing and testing.

4.5. Measurement of SETD2 Enzyme Activity

The chemiluminescence assay used here assesses SETD2-specific tri-methylation ac-
tivity toward lysine 36 at histone H3 (H3K36me3) in an in vitro setup (see Figure S4A
for the assay principle). The measurement of SETD2 activity was performed according
to the manufacturer’s protocol (Catalog-No. 52060, https:/ /bpsbioscience.com/setd?2
-chemiluminescent-assay-kit-52060, accessed on 1 August 2021). These values were blank-
corrected and normalized. The enzymatic activities were determined relative to the positive
control of the kit (full enzymatic activity) and to the known SET domain inhibitor, sine-
fungin, which was used as a negative control (complete enzymatic activity inhibition).
The compounds used were diluted in DMSO and used at 100 uM. The 1Csy values were
calculated from at least five concentrations in duplicates with serial dilutions starting from
1 mM, using the Prism8 software (GraphPad, San Diego, CA, USA).
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4.6. Evaluation of Antiproliferative Effects of C13 in Leukemia Cell Lines

MOLM-13 and MV4-11 human leukemia cell lines were obtained from DSMZ (Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH, 2014, www.dsmz.de, accessed
on 1 August 2021). MOLM-13 and MV4-11 leukemia cell lines were seeded in white 96-well
plates at a density of 5 x 10% cells/well and treated with C13 in biological triplicates at
indicated concentrations. Five days after treatment, cell viability was evaluated using the
CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI, USA) on a SPARK
multimode microplate reader (Tecan Trading AG, Mannedorf, Switzerland). ICsy, ICj,
and IC;g values were calculated using Prism8 software (GraphPad, San Diego, CA, USA).
Detailed information on experimental procedures for cell culture and Western blotting is
included in the Supplementary Materials, Section Sé6.
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