67 research outputs found

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    Protic plastic crystal/PVDF composite membranes for Proton Exchange Membrane Fuel Cells under non-humidified conditions

    Get PDF
    Composite membranes based on the protic plastic crystal N,N-dimethylethylenediammonium triflate [DMEDAH][TFO] and poly(vinylidene fluoride) (PVDF) nanofibers have been developed for proton exchange membrane fuel cells (PEMFCs) under non-humidified conditions. The effect of addition of 5 mol% triflic acid or 5 mol% of the base N,N-dimethylethylenediamine on the thermal and transport properties of the material is discussed. The acid-doped plastic crystal reports more than double the ionic conductivity of the pure plastic crystal. The effects of doping the plastic crystal and the composites, with acid or base, on the ionic conductivity and fuel cell performance are reported. Composite membranes based on PVDF nanofibers and [DMEDAH][TFO] were tested in a single PEMFC. The results show the potential of these composite membranes to be used as electrolytes in this electrochemical application without external humidification.The authors acknowledge funding from the Australian Research Council (ARC) through its Centre of Excellence program, through the Australian Laureate Fellowship scheme for D.R.M and M.F, and Discovery Project DP140101535. In addition, M.D., A.O. and I.O acknowledge Spanish Ministry of Economy and Competitiveness for the project CTQ2015-66078-R (MINECO/FEDER, UE). M. D. is grateful to the Spanish Ministry of Education, Culture and Sport for the FPU2012-3721

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Alveolar macrophage apoptosis-associated bacterial killing helps prevent murine pneumonia

    Get PDF
    RATIONALE: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AM) kill bacteria. OBJECTIVES: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. METHODS: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific over-expression of the human anti-apoptotic Mcl-1 protein, a factor upregulated in AM from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. MEASUREMENTS AND MAIN RESULTS: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for > 12 h) overwhelmed initial killing and a second late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late-phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species (mROS) and nitric oxide (NO), whose peak generation coincided with the late-phase of killing. The CD68.hMcl-1 transgene prevented mROS but not NO generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. CONCLUSIONS: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AM to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel host-based antimicrobial strategy

    Genomic classification and prognosis in acute myeloid leukemia

    Get PDF
    BACKGROUND: Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS: We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS: We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNAsplicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2R172 mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification

    Assaying macrophage chemotaxis using fluid‐walled microfluidics

    No full text
    While many tools exist to study immune-cell chemotaxis in vitro, current methods often lack desirable features. Using fluid-walled microfluidics, circuits are built around primary murine macrophages deposited in pre-defined patterns on Petri dishes or microplates. Concentration gradients of complement component 5a (C5a) are established in flow-free or flowing environments, image cell migration, and relate cell directionality and velocity to calculated local C5a concentrations. In flow-free circuits built around patterned macrophages, only cells nearest the C5a source migrate regardless of local attractant concentration. Conversely, in flowing circuits free from intercellular signaling and attractant degradation, only cells distant from the source migrate. In both systems, cells respond to lower C5a concentrations than previously reported (≈0.1 pM). Finally, macrophages follow instantly-shifted gradients better than slowly-shifting ones, suggesting that migration depends on both spatial and temporal responses to concentration

    The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner

    No full text
    We have introduced a human beta-globin minilocus, containing the recently described dominant control region (DCR), the beta-globin or Thy-1 gene, and a thymidine kinase (tk)-neoR gene into erythroid and non-erythroid cells. Analysis of the transcription levels of the genes shows that the DCR directs high levels of human beta-globin, Thy-1 and tk-neo expression independent of integration sites in an erythroid-specific manner. The presence of the DNAasel hypersensitive sites at the 5' end of the locus is required for this effect on the homologous and heterologous gene. An analysis of the DCR chromatin in transfected mouse erythroleukemic cells suggests that the formation of the hypersensitive sites in this region precedes beta-globin gene expression
    • …
    corecore