53 research outputs found

    Role of macrophages in experimental group B streptococcal arthritis.

    Get PDF
    Septic arthritis is a clinical manifestation of group B Streptococcus (GBS) infection in both neonates and adults. Because macrophages are known to participate in tissue injury, the role of this cell population in GBS-induced arthritis was investigated. Mice were rendered monocytopenic by administration of etoposide, a drug that selectively depletes the monocyte/macrophage population and then injected with GBS (1 x 10(7) colony-forming units per mouse). Appearance of arthritis, mortality, GBS growth in the organs, and local and systemic cytokine production were examined. Etoposide-treated mice had a significantly less severe arthritis than control animals. Histopathological analysis of the joints confirmed clinical observations. Decreased joint levels of the proinflammatory cytokines interleukin 1 (IL-1) beta and IL-6 accompanied the less severe development of arthritis in monocytopenic mice. In contrast, mortality was increased in the etoposide-treated mice compared with controls. Monocytopenic mice exhibited elevated bacterial load in the blood and kidneys at all time points examined. These results indicate that lack of macrophages leads to less severe joint lesions, but also results in impaired clearance of bacteria, and consequent enhancement of mortality rates

    The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice

    Get PDF
    Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression

    Mycobacterium tuberculosis Drug Resistance, Abkhazia

    Get PDF
    To the Editor: Drug-resistant tuberculosis (TB) has been identified as a major problem in the former Soviet Union, and was recently surveyed in the Aral Sea regions of Dashoguz (Turkmenistan) and Karakalpakstan (Uzbekistan) (1). However, few data are available for the Caucasian region and published reports have focused mainly on prisons (2,3). We report a drug resistance survey for first- and second-line anti-TB drugs conducted in Abkhazia, a Caucasian region of 8,600 km2 with approximately 250,000 inhabitants, at the western end of Georgia on the Black Sea

    Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms

    Get PDF
    To date there are no clear criteria to determine whether a microbe is susceptible to biocides or not. As a starting point for distinguishing between wild-type and resistant organisms, we set out to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) distributions for four common biocides; triclosan, benzalkonium chloride, chlorhexidine and sodium hypochlorite for 3319 clinical isolates, with a particular focus on Staphylococcus aureus (N = 1635) and Salmonella spp. (N = 901) but also including Escherichia coli (N = 368), Candida albicans (N = 200), Klebsiella pneumoniae (N = 60), Enterobacter spp. (N = 54), Enterococcus faecium (N = 53), and Enterococcus faecalis (N = 56). From these data epidemiological cut-off values (ECOFFs) are proposed. As would be expected, MBCs were higher than MICs for all biocides. In most cases both values followed a normal distribution. Bimodal distributions, indicating the existence of biocide resistant subpopulations were observed for Enterobacter chlorhexidine susceptibility (both MICs and MBCs) and the susceptibility to triclosan of Enterobacter (MBC), E. coli (MBC and MIC) and S. aureus (MBC and MIC). There is a concern on the potential selection of antibiotic resistance by biocides. Our results indicate however that resistance to biocides and, hence any potential association with antibiotic resistance, is uncommon in natural populations of clinically relevant microorganisms. \ua9 2014 Morrissey et al

    Protein Array Profiling of Tic Patient Sera Reveals a Broad Range and Enhanced Immune Response against Group A Streptococcus Antigens

    Get PDF
    The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS) is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS antigen-dependent induction of autoantibodies in susceptible individuals may be involved the occurrence of tic disorders

    Mice repeatedly exposed to Group-A \u3b2-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon

    Get PDF
    Repeated exposure to Group-A \u3b2-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities

    Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates. \ua9 2014 Macmillan Publishers Limited. All rights reserved

    Inhibition of Nitric Oxide Synthase Exacerbates Group B Streptococcus Sepsis and Arthritis in Mice

    No full text
    The role of nitric oxide in group B Streptococcus (GBS) infection was evaluated by inhibiting its production with aminoguanidine (AG). AG-treated mice displayed higher mortality rates and more frequent and severe arthritis than controls. Worsening of arthritis correlated with a higher number of GBS cells in the joints and local interleukin-1β production

    Multiplex PCR Assay for Direct Identification of Group B Streptococcal Alpha-Protein-Like Protein Genes

    No full text
    We developed a group B streptococcus multiplex PCR assay which allows, by direct analysis of the amplicon size, determination of the surface protein antigen genes of alpha-C protein, epsilon protein, Rib, Alp2, Alp3, and Alp4. The multiplex PCR assay offers a rapid and simple method of subtyping Streptococcus agalactiae based on surface protein genes

    Detection of Genes Encoding Internalization-Associated Proteins in Streptococcus pyogenes Isolates from Patients with Invasive Diseases and Asymptomatic Carriers

    No full text
    A total of 161 Streptococcus pyogenes isolates from patients with invasive infections or from asymptomatic carriers were examined for genes (prtF1, prtF2, and fba) coding for fibronectin-binding proteins to evaluate their involvement in the pathogenesis of different streptococcal manifestations. We found no significant differences in the presence of these three genes between the two groups. Overall, the prtF2 gene was present in similar percentages among strains from both sources (61% versus 63%). Strains carrying the gene fba were slightly more common among those isolated from asymptomatic carriers (72.6% versus 65%). Also, the prtF1 gene was present in a higher, but not significant, percentage among strains from throat swabs than among isolates from invasive infections (75% versus 64.9%). However, this more detailed characterization of the genes encoding fibronectin-binding proteins allowed us to identify a strong association of genes of the erm class, coding for macrolide resistance, with prtF1 and prtF2 rather than with prtF1 alone. Since macrolide resistance was significantly associated with throat swab isolates, it may be hypothesized that proteins coded by prtF1 and prtF2 genes may be synergic in providing support for cell invasion and/or colonizing or persistence efficiency
    • …
    corecore