22 research outputs found
Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application
We present a new methodology for inverting PâtoâS receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with selfâconsistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two endâmember compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccountedâfor crustal structure strongly affects the retrieval of mantle properties, calling for a twoâstep strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work
was supported by a grant from the
Swiss National Science Foundation
(SNF project 200021_159907). B. T. was
funded by a Délégation CNRS and
Congé pour Recherches et Conversion
Thématique from the Université de
Lyon to visit the Research School of
Earth Sciences (RSES), The Australian
National University (ANU). B. T. has
received funding from the European
Unionâs Horizon 2020 research and
innovation programme under the
Marie Sklodowska-Curie grant
agreement 79382
International Geomagnetic Reference Field: the thirteenth generation
In December 2019, the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group (V-MOD) adopted the thirteenth generation of the International Geomagnetic Reference Field (IGRF). This IGRF updates the previous generation with a definitive main field model for epoch 2015.0, a main field model for epoch 2020.0, and a predictive linear secular variation for 2020.0 to 2025.0. This letter provides the equations defining the IGRF, the spherical harmonic coefficients for this thirteenth generation model, maps of magnetic declination, inclination and total field intensity for the epoch 2020.0, and maps of their predicted rate of change for the 2020.0 to 2025.0 time period
May 2002), the NPOESS Cross-track Infrared Sounder (CrIS), the MetOp Infrared Atmospheric Sounding Interferometer
Errors due to wireless transmission can have an arbitrarily large impact on a compressed file. A single bit error appearing in the compressed file can propagate during a decompression procedure and destroy the entire granule. Such a loss is unacceptable since this data is critical for a range of applications, including weather prediction and emergency response planning. The impact of a bit error in the compressed granule is very sensitive to the errorâs location in the file. There is a natural hierarchy of compressed data in terms of impact on the final retrieval products. For the considered compression scheme, errors in some parts of the data yield no noticeable degradation in the final products. We formulate a priority scheme for the compressed data and present an error correction approach based on minimizing impact on the retrieval products. Forward error correction codes (e.g., turbo, LDPC) allow the tradeoff between error correction strength and file inflation (bandwidth expansion). We propose segmenting the compressed data based on its priority and applying different-strength FEC codes to different segments. In this paper we demonstrate that this approach can achieve negligible product degradation while maintaining an overall 3-to-1 compression ratio on the final file. We apply this to AIRS sounder data to demonstrate viability for the sounder on the next-generation GOES-R platform
Recommended from our members
Design and VLSI implementation for a WCDMA multipath searcher
The third generation (3G) of cellular communications standards is based on wideband CDMA. The wideband signal experiences frequency selective fading due to multipath propagation. To mitigate this effect, a RAKE receiver is typically used to coherently combine the signal energy received on different multipaths. An effective multipath searcher is, therefore, required to identify the delayed versions of the transmitted signal with low probability of false alarm and misdetection. This paper presents an efficient and novel WCDMA multipath searcher design and VLSI architecture that provides a good compromise between complexity, performance, and power consumption. Novel multipath searcher algorithms such as time domain interleaving and peak detection are also presented. The proposed searcher was implemented in 0.18 mu m CMOS technology and requires only 150 k gates for a total area of 1.5 mm(2) consuming 6.6 mw at 100 MHz. The functionality and performance of the searcher was verified under realistic conditions using a channel emulator