16,566 research outputs found

    Phantom Maps and Homology Theories

    Get PDF
    We study phantom maps and homology theories in a stable homotopy category S via a certain Abelian category A. We express the group P(X,Y) of phantom maps X -> Y as an Ext group in A, and give conditions on X or Y which guarantee that it vanishes. We also determine P(X,HB). We show that any composite of two phantom maps is zero, and use this to reduce Margolis's axiomatisation conjecture to an extension problem. We show that a certain functor S -> A is the universal example of a homology theory with values in an AB 5 category and compare this with some results of Freyd.Comment: 25 pages, AMSLaTeX, to appear in Topolog

    Integrating biological knowledge into variable selection : an empirical Bayes approach with an application in cancer biology

    Get PDF
    Background: An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data. Results: We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information. Conclusions: The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge

    A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers

    Full text link
    We develop a simple model for the slow lights in Vertical Cavity Surface Emission Lasers (VCSELs), with the combination of cavity and population pulsation effects. The dependences of probe signal power, injection bias current and wavelength detuning for the group delays are demonstrated numerically and experimentally. Up to 65 ps group delays and up to 10 GHz modulation frequency can be achieved in the room temperature at the wavelength of 1.3 μ\mum. The most significant feature of our VCSEL device is that the length of active region is only several μ\mum long. Based on the experimental parameters of quantum dot VCSEL structures, we show that the resonance effect of laser cavity plays a significant role to enhance the group delays

    Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions

    Full text link
    The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization to phases with a time periodic order parameter. The richest behavior is found near the tricritical point were the incoherent, stationarily synchronized, ``traveling wave'' and ``standing wave'' phases coexist. The behavior near the tricritical point can be extrapolated to the rest of the phase diagram. Direct Brownian simulation of the model confirms our findings.Comment: Revtex,16 pag.,10 fig., submitted to Physica

    Effect of membrane character and solution chemistry on microfiltration performance

    Get PDF
    To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1 mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220 nm but not 254 nm were responsible for “gluing” the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of “glue” that holds the organic colloids to the membrane surface

    Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    Get PDF
    Before the onset of a flare is observed in hard X-rays there is often a pro- longed pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission suggesting that energy is being released and deposited into the corona and chromosphere already at this stage. This work analyses the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well observed flare with a prolonged pre-heating phase are analysed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minutes duration of the pre-heating phase we find no hint of accelerated electrons, neither in hard X-rays nor in microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to sustain the observed temperature and emission measure. Under the assumption of this energy being transported toward the chromosphere via thermal conduc- tion, significant energy deposition at the chromosphere is expected. However, no detectable increase of the emission in the AIA wavelength channels sensitive to chromospheric temperatures is observed. The observations suggest energy release and deposition in the flaring loop before the onset of particle acceleration, yet a model in which energy is conducted to the chromosphere and subsequent heating of the chromosphere is not supported by the observations

    Is the blood an alternative for programmed cell death ligand 1 assessment in non-small cell lung cancer?

    Get PDF
    Anti-programmed cell death (PD)-1/PD-ligand 1 (L1) therapies have significantly improved the outcomes for non-small cell lung cancer (NSCLC) patients in recent years. These therapies work by reactivating the immune system and enabling it to target cancer cells once more. There is a general agreement that expression of PD-L1 on tumour cells predicts the therapeutic response to PD-1/PD-L1 inhibitors in NSCLC. Hence, immunohistochemical staining of tumour tissue biopsies from NSCLC patients with PD-L1 antibodies is the current standard used to aid selection of patients for treatment with anti-PD-1 as first line therapy. However, issues of small tissue samples, tissue heterogeneity, the emergence of new metastatic sites, and dynamic changes in the expression of PD-L1 may influence PD-L1 status during disease evolution. Re-biopsy would expose patients to the risk of complications and tardy results. Analysis of PD-L1 expression on circulating tumour cells (CTCs) may provide an accessible and non-invasive means to select patients for anti-PD-1 therapies. Additionally, CTCs could potentially provide a useful biomarker in their own right. Several published studies have assessed PD-L1 expression on CTCs from NSCLC patients. Overall, analysis of PD-L1 on CTCs is feasible and could be detected prior to and after frontline therapy. However, there is no evidence on whether PD-L1 expression on CTCs could predict the response to anti-PD-1/PD-L1 treatment. This review examines the challenges that need to be addressed to demonstrate the clinical validity of PD-L1 analysis in CTCs as a biomarker capable of predicting the response to immune checkpoint blockade
    corecore