749 research outputs found

    Identification of limb-specific Lmx1b auto-regulatory modules with Nail-patella syndrome pathogenicity

    Get PDF
    © The Author(s) 2021.LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis.This work was supported in part by grants from the Spanish Ministerio de Ciencia, Innovación y Universidades (M.A.R) (BFU2017-88265-P); the National Organization for Rare Disorders (K.C.O.), and the Loma Linda University Pathology Research Endowment Fund (K.C.O.)

    Inter-rater reliability and stability of diagnoses of autism spectrum disorder in children identified through screening at a very young age

    Get PDF
    To examine the inter-rater reliability and stability of autism spectrum disorder (ASD) diagnoses made at a very early age in children identified through a screening procedure around 14 months of age. In a prospective design, preschoolers were recruited from a screening study for ASD. The inter-rater reliability of the diagnosis of ASD was measured through an independent assessment of a randomly selected subsample of 38 patients by two other psychiatrists. The diagnoses at 23 months and 42 months of 131 patients, based on the clinical assessment and the diagnostic classifications of standardised instruments, were compared to evaluate stability of the diagnosis of ASD. Inter-rater reliability on a diagnosis of ASD versus non-ASD at 23 months was 87% with a weighted κ of 0.74 (SE 0.11). The stability of the different diagnoses in the autism spectrum was 63% for autistic disorder, 54% for pervasive developmental disorder, not otherwise specified (PDD-NOS), and 91% for the whole category of ASD. Most diagnostic changes at 42 months were within the autism spectrum from autistic disorder to PDD-NOS and were mainly due to diminished symptom severity. Children who moved outside the ASD category at 42 months made significantly larger gains in cognitive and language skills than children with a stable ASD diagnosis. In conclusion, the inter-rater reliability and stability of the diagnoses of ASD established at 23 months in this population-based sample of very young children are good

    Cross-species efficacy of enzyme replacement therapy for CLN1 disease in mice and sheep

    Get PDF
    CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1(–/–)) and CLN1(R151X) sheep to assess how to potentially scale up for translation. In Cln1(–/–) mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1(R151X) sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy

    Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors

    Get PDF
    Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics

    Implementing shared decision-making in nutrition clinical practice: A theory-based approach and feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are a growing number of dietary treatment options to choose from for the management of many chronic diseases. Shared decision making represents a promising approach to improve the quality of the decision making process needed for dietary choices that are informed by the best evidence and value-based. However, there are no studies reporting on theory-based approaches that foster the implementation of shared decision making in health professions allied to medicine. The objectives of this study are to explore the integration of shared decision making within real nutritional consultations, and to design questionnaires to assess dieticians' intention to adopt two specific behaviors related to shared decision making using the Theory of Planned Behavior.</p> <p>Methods</p> <p>Forty dieticians will audiotape one clinical encounter to explore the presence of shared decision making within the consultation. They will also participate to one of five to six focus groups that aim to identify the salient beliefs underlying the determinants of their intention to present evidence-based dietary treatment options to their patients, and clarify the values related to dietary choices that are important to their patients. These salient beliefs will be used to elaborate the items of two questionnaires. The internal consistency of theoretical constructs and the temporal stability of their measurement will be checked using the test-retest method by asking 35 dieticians to complete the questionnaire twice within a two-week interval.</p> <p>Discussion</p> <p>The proposed research project will be the first study to: provide preliminary data about the adoption of shared decision making by dieticians and theirs patients; elicit dieticians' salient beliefs regarding the intention to adopt shared decision making behaviors, report on the development of a specific questionnaire; explore dieticians' views on the implementation of shared decision making; and compare their views regarding the implementation of shared decision making in different clinical settings.</p> <p>It is anticipated that the results generated by the proposed research project will significantly contribute to the emergence of shared decision making in nutrition through a theory-based approach.</p

    Online patient simulation training to improve clinical reasoning: a feasibility randomised controlled trial

    Get PDF
    Background Online patient simulations (OPS) are a novel method for teaching clinical reasoning skills to students and could contribute to reducing diagnostic errors. However, little is known about how best to implement and evaluate OPS in medical curricula. The aim of this study was to assess the feasibility, acceptability and potential effects of eCREST — the electronic Clinical Reasoning Educational Simulation Tool. Methods A feasibility randomised controlled trial was conducted with final year undergraduate students from three UK medical schools in academic year 2016/2017 (cohort one) and 2017/2018 (cohort two). Student volunteers were recruited in cohort one via email and on teaching days, and in cohort two eCREST was also integrated into a relevant module in the curriculum. The intervention group received three patient cases and the control group received teaching as usual; allocation ratio was 1:1. Researchers were blind to allocation. Clinical reasoning skills were measured using a survey after 1 week and a patient case after 1 month. Results Across schools, 264 students participated (18.2% of all eligible). Cohort two had greater uptake (183/833, 22%) than cohort one (81/621, 13%). After 1 week, 99/137 (72%) of the intervention and 86/127 (68%) of the control group remained in the study. eCREST improved students’ ability to gather essential information from patients over controls (OR = 1.4; 95% CI 1.1–1.7, n = 148). Of the intervention group, most (80/98, 82%) agreed eCREST helped them to learn clinical reasoning skills. Conclusions eCREST was highly acceptable and improved data gathering skills that could reduce diagnostic errors. Uptake was low but improved when integrated into course delivery. A summative trial is needed to estimate effectiveness

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection.

    Get PDF
    Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG–FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression

    Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children.

    Get PDF
    Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.Wellcome Trust (Grant ID: 084716/Z/08/Z)This is the final version of the article. It first appeared from Cell Press/Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.02
    corecore