185 research outputs found

    Does gene dosage really matter?

    Get PDF
    Mechanisms to compensate for dosage differences of genes on sex chromosomes are widespread in animals and have been thought to be critical for viability. However, in birds, compensation is inefficient, implying that for many genes dosage compensation is not critical, and for some genes, dosage differences have even been selected for

    Are homologies in vertebrate sex determination due to shared ancestry or to limited options?

    Get PDF
    The bewildering array of different sex-determination systems in vertebrates is built on a common set of genes and chromosomes

    Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals

    No full text
    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.This project was supported by an Australian Research Fellowship to PDW (DP0987091) and an Australian Research Council discovery project grant to PDW, JED and JAMG (DP1094868) (http://www.arc.gov.au/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX) syndromes.</p> <p>Results</p> <p>To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X) and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby <it>ARX </it>homologue (located on tammar chromosome 5p), has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of <it>ARX </it>over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function.</p> <p>Conclusion</p> <p>Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.</p

    A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The limited (2X) coverage of the tammar wallaby (Macropus eugenii) genome sequence dataset currently presents a challenge for assembly and anchoring onto chromosomes. To provide a framework for this assembly, it would be a great advantage to have a dense map of the tammar wallaby genome. However, only limited mapping data are available for this non-model species, comprising a physical map and a linkage map. RESULTS: We combined all available tammar wallaby mapping data to create a tammar wallaby integrated map, using the Location DataBase (LDB) strategy. This first-generation integrated map combines all available information from the second-generation tammar wallaby linkage map with 148 loci, and extensive FISH mapping data for 492 loci, especially for genes likely to be located at the ends of wallaby chromosomes or at evolutionary breakpoints inferred from comparative information. For loci whose positions are only approximately known, their location in the integrated map was refined on the basis of comparative information from opossum (Monodelphis domestica) and human. Interpolation of segments from the opossum and human assemblies into the integrated map enabled the subsequent construction of a tammar wallaby first-generation virtual genome map, which comprises 14336 markers, including 13783 genes recruited from opossum and human assemblies. Both maps are freely available at http://compldb.angis.org.au. CONCLUSIONS: The first-generation integrated map and the first-generation virtual genome map provide a backbone for the chromosome assembly of the tammar wallaby genome sequence. For example, 78% of the 10257 gene-scaffolds in the Ensembl annotation of the tammar wallaby genome sequence (including 10522 protein-coding genes) can now be given a chromosome location in the tammar wallaby virtual genome map.Peer Reviewe

    Transcription-associated mutation promotes RNA complexity in highly expressed genes - a major new source of selectable variation

    Get PDF
    Alternatively spliced transcript isoforms are thought to play a critical role for functional diversity. However, the mechanism generating the enormous diversity of spliced transcript isoforms remains unknown, and its biological significance remains unclear. We analyzed transcriptomes in saker falcons, chickens, and mice to show that alternative splicing occurs more frequently, yielding more isoforms, in highly expressed genes. We focused on hemoglobin in the falcon, the most abundantly expressed genes in blood, finding that alternative splicing produces 10-fold more isoforms than expected from the number of splice junctions in the genome. These isoforms were produced mainly by alternative use of de novo splice sites generated by transcription-associated mutation (TAM), not by the RNA editing mechanism normally invoked. We found that high expression of globin genes increases mutation frequencies during transcription, especially on nontranscribed DNA strands. After DNA replication, transcribed strands inherit these somatic mutations, creating de novo splice sites, and generating multiple distinct isoforms in the cell clone. Bisulfate sequencing revealed that DNA methylation may counteract this process by suppressing TAM, suggesting DNA methylation can spatially regulate RNA complexity. RNA profiling showed that falcons living on the high Qinghai–Tibetan Plateau possess greater global gene expression levels and higher diversity of mean to high abundance isoforms (reads per kilobases per million mapped reads ≥18) than their low-altitude counterparts, and we speculate that this may enhance their oxygen transport capacity under low-oxygen environments. Thus, TAM-induced RNA diversity may be physiologically significant, providing an alternative strategy in lifestyle evolution

    Evolution and comparative analysis of the MHC Class III inflammatory region

    Get PDF
    BACKGROUND: The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative analysis of a tammar wallaby BAC containing the inflammatory region. We also discuss the extent of sequence conservation across the entire region and identify elements conserved in evolution. RESULTS: Fourteen Class III genes from the tammar wallaby inflammatory region were characterised and compared to their orthologues in other vertebrates. The organisation and sequence of genes in the inflammatory region of both the wallaby and South American opossum are highly conserved compared to known genes from eutherian ("placental") mammals. Some minor differences separate the two marsupial species. Eight genes within the inflammatory region have remained tightly clustered for at least 360 million years, predating the divergence of the amphibian lineage. Analysis of sequence conservation identified 354 elements that are conserved. These range in size from 7 to 431 bases and cover 15.6% of the inflammatory region, representing approximately a 4-fold increase compared to the average for vertebrate genomes. About 5.5% of this conserved sequence is marsupial-specific, including three cases of marsupial-specific repeats. Highly Conserved Elements were also characterised. CONCLUSION: Using comparative analysis, we show that a cluster of MHC genes involved in inflammation, including TNF, LTA (or its putative teleost homolog TNF-N), APOM, and BAT3 have remained together for over 450 million years, predating the divergence of mammals from fish. The observed enrichment in conserved sequences within the inflammatory region suggests conservation at the transcriptional regulatory level, in addition to the functional level
    • …
    corecore