289 research outputs found

    The spin temperature of high-redshift damped Lyman-α\alpha systems

    Get PDF
    We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-α\alpha absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and velocity widths. Including literature data, our sample consists of 37 DLAs with estimates of the spin temperature TsT_s and the covering factor. We find a strong 4σ4\sigma) difference between the TsT_s distributions in high-z (z>2.4) and low-z (z<2.4) DLA samples. The high-z sample contains more systems with high TsT_s values, 1000\gtrsim 1000 K. The TsT_s distributions in DLAs and the Galaxy are also clearly (~6σ6\sigma) different, with more high-TsT_s sightlines in DLAs than in the Milky Way. The high TsT_s values in the high-z DLAs of our sample arise due to low fractions of the cold neutral medium. For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an anti-correlation between TsT_s and [Z/H], at 3.5σ3.5\sigma significance via a non-parametric Kendall-tau test. This result was obtained with the assumption that the DLA covering factor is equal to the core fraction. Monte Carlo simulations show that the significance of the result is only marginally decreased if the covering factor and the core fraction are uncorrelated, or if there is a random error in the inferred covering factor. We also find evidence for redshift evolution in DLA TsT_s values even for the z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or larger than those of the background quasars, they have similar efficiency in covering the quasars. Low covering factors in high-z DLAs thus cannot account for the observed redshift evolution in spin temperatures. (Abstract abridged.)Comment: 37 pages, 22 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Interactive seminars or small group tutorials in preclinical medical education: results of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Learning in small group tutorials is appreciated by students and effective in the acquisition of clinical problem-solving skills but poses financial and resource challenges. Interactive seminars, which accommodate large groups, might be an alternative. This study examines the educational effectiveness of small group tutorials and interactive seminars and students' preferences for and satisfaction with these formats.</p> <p>Methods</p> <p>Students in year three of the Leiden undergraduate medical curriculum, who agreed to participate in a randomized controlled trial (RCT, n = 107), were randomly allocated to small group tutorials (n = 53) or interactive seminars (n = 54). Students who did not agree were free to choose either format (n = 105). Educational effectiveness was measured by comparing the participants' results on the end-of-block test. Data on students' reasons and satisfaction were collected by means of questionnaires. Data was analyzed using student unpaired t test or chi-square test where appropriate.</p> <p>Results</p> <p>There were no significant differences between the two educational formats in students' test grades. Retention of knowledge through active participation was the most frequently cited reason for preferring small group tutorials, while a dislike of compulsory course components was mentioned more frequently by students preferring interactive seminars. Small group tutorials led to greater satisfaction.</p> <p>Conclusions</p> <p>We found that small group tutorials leads to greater satisfaction but not to better learning results. Interactive learning in large groups might be might be an effective alternative to small group tutorials in some cases and be offered as an option.</p

    Non-Invasive Estimation of Local Field Potentials for Neuroprosthesis Control

    Get PDF
    Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions; i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using different number of electrodes

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills

    Get PDF
    The M&ouml;ssbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe3+-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe3+/FeT &lt; 0.2) with Fe from olivine, pyroxene (Ol &gt; Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe3+/FeT&nbsp;~ 0.6&ndash;0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe2+ from Ol + Px is 40&ndash;49% and 9&ndash;24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm 3&ndash;6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt 10&ndash;15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt = 40%). Goethite (&alpha;-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe3+/FeT&nbsp;~ 0.3) occur throughout Gusev crater (60&ndash;80% Fe from Ol + Px, 10&ndash;30% from npOx, and 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe3+-sulfate (65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.Additional co-authors: E Kankeleit, P Gütlich, F Renz, SW Squyres, RE Arvidso

    Involvement in teaching improves learning in medical students: a randomized cross-over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peer-assisted learning has many purported benefits including preparing students as educators, improving communication skills and reducing faculty teaching burden. But comparatively little is known about the effects of teaching on learning outcomes of peer educators in medical education.</p> <p>Methods</p> <p>One hundred and thirty-five first year medical students were randomly allocated to 11 small groups for the Gastroenterology/Hematology Course at the University of Calgary. For each of 22 sessions, two students were randomly selected from each group to be peer educators. Students were surveyed to estimate time spent preparing as peer educator versus group member. Students completed an end-of-course 94 question multiple choice exam. A paired t-test was used to compare performance on clinical presentations for which students were peer educators to those for which they were not.</p> <p>Results</p> <p>Preparation time increased from a mean (SD) of 36 (33) minutes baseline to 99 (60) minutes when peer educators (Cohen's <it>d </it>= 1.3; p < 0.001). The mean score (SD) for clinical presentations in which students were peer educators was 80.7% (11.8) compared to77.6% (6.9) for those which they were not (<it>d </it>= 0.33; <it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Our results suggest that involvement in teaching small group sessions improves medical students' knowledge acquisition and retention.</p

    Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    Get PDF
    The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm

    Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter

    Get PDF
    We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496–3501, 2006; De Grave et al. in Exp Br Res 193:421–427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information

    Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits

    Get PDF
    The M&ouml;ssbauer (MB) spectrometer on Opportunity measured the Fe oxidation state, identified Fe-bearing phases, and measured relative abundances of Fe among those phases at Meridiani Planum, Mars. Eight Fe-bearing phases were identified: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and metallic Fe (kamacite). Burns Formation outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (29%, 36%, and 20% of total Fe). The high oxidation state of the S-rich rock (Fe3+/FeT&nbsp;~&nbsp;0.9) implies that S is present as the sulfate anion. Jarosite is mineralogical evidence for aqueous processes under acid-sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/FeT ~&nbsp;0.2&ndash;0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Average proportions of total Fe from olivine, pyroxene, npOx, magnetite, and hematite are 33%, 38%, 18%, 6%, and 4%, respectively. TheMB parameters of outcrop npOx and basaltic-soil npOx are different, but it is not possible to infer mineralogical information beyond octahedrally coordinated Fe3+. Basaltic soils at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions.Additonal co-authors: P Gütlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidso
    corecore