32 research outputs found

    Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures

    Get PDF
    The reliable determination of past seawater temperature is fundamental to paleoclimate studies. We test the robustness of two paleotemperature proxies by combining Mg/Ca and clumped isotopes (Δ47) on the same specimens of core top planktonic foraminifera. The strength of this approach is that Mg/Ca and Δ47 are measured on the same specimens of foraminifera, thereby providing two independent estimates of temperature. This replication constitutes a rigorous test of individual methods with the advantage that the same approach can be applied to fossil specimens. Aliquots for Mg/Ca and clumped analyses are treated in the same manner following a modified cleaning procedure of foraminifera for trace element and isotopic analyses. We analysed eight species of planktonic foraminifera from coretop samples over a wide range of temperatures from 2 to 29°C. We provide a new clumped isotope temperature calibrations using subaqueous cave carbonates, which is consistent with recent studies. Tandem Mg/Ca–Δ47 results follow an exponential curve as predicted by temperature calibration equations. Observed deviations from the predicted Mg/Ca-Δ47 relationship are attributed to the effects of Fe-Mn oxide coatings, contamination, or dissolution of foraminiferal tests. This coupled approach provides a high degree of confidence in temperature estimates when Mg/Ca and Δ47 yield concordant results, and can be used to infer the past δ18O of seawater (δ18Osw) for paleoclimate studies

    Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment

    Get PDF
    Hydrogen sulfide production by sulfate reducing bacteria (SRB) is the primary cause of oil reservoir souring. Amending environments with chlorate or perchlorate [collectively denoted (per)chlorate] represents an emerging technology to prevent the onset of souring. Recent studies with perchlorate reducing bacteria (PRB) monocultures demonstrated that they have the innate capability to enzymatically oxidize sulfide, thus PRB may offer an effective means of reversing souring. (Per)chlorate may be effective by (i) direct toxicity to SRB; (ii) competitive exclusion of SRB by PRB; or (iii) reversal of souring through re-oxidation of sulfide by PRB. To determine if (per)chlorate could sweeten a soured column system and assign a quantitative value to each of the mechanisms we treated columns flooded with San Francisco bay water with temporally decreasing amounts (50, 25, and 12.5 mM) of (per)chlorate. Geochemistry and the microbial community structure were monitored and a reactive transport model was developed, Results were compared to columns treated with nitrate or untreated. Souring was reversed by all treatments at 50 mM but nitrate-treated columns began to re-sour when treatment concentrations decreased (25 mM). Re-souring was only observed in (per)chlorate-treated columns when concentrations were decreased to 12.5 mM and the extent of re-souring was less than the control columns. Microbial community analyses indicated treatment-specific community shifts. Nitrate treatment resulted in a distinct community enriched in genera known to perform sulfur cycling metabolisms and genera capable of nitrate reduction. (Per)chlorate treatment enriched for (per)chlorate reducing bacteria. (Per)chlorate treatments only enriched for sulfate reducing organisms when treatment levels were decreased. A reactive transport model of perchlorate treatment was developed and a baseline case simulation demonstrated that the model provided a good fit to the effluent geochemical data. Subsequent simulations teased out the relative role that each of the three perchlorate inhibition mechanisms played during different phases of the experiment. These results indicate that perchlorate addition is an effective strategy for both souring prevention and souring reversal. It provides insight into which organisms are involved, and illuminates the interactive effects of the inhibition mechanisms, further highlighting the versatility of perchlorate as a sweetening agent

    Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka

    No full text
    Determining the magnitude of tropical temperature change during the last glacial period is a fundamental problem in paleoclimate research. Large discrepancies exist in estimates of tropical cooling inferred from marine and terrestrial archives. Here we present a reconstruction of temperature for the last 42 ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. We compared three independent methods of glacial temperature reconstruction: pollen-based temperature estimates, tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, and clumped isotope thermometry. Pollen provides a near-continuous record of temperature change for most of the glacial period but the occurrence of a no-analog pollen assemblage during cold, dry stadials renders temperature estimates unreliable for these intervals. In contrast, the gypsum hydration and clumped isotope methods are limited mainly to the stadial periods when gypsum and biogenic carbonate co-occur. The combination of palynological and geochemical methods leads to a continuous record of tropical temperature change in lowland Central America over the last 42 ka. Furthermore, the gypsum hydration water method and clumped isotope thermometry provide independent estimates of not only temperature, but also the δ18O of lake water that is dependent on the hydrologic balance between evaporation and precipitation over the lake surface and its catchment. The results show that average glacial temperature was cooler in lowland Central America by 5–10 °C relative to the Holocene. The coldest and driest times occurred during North Atlantic stadial events, particularly Heinrich stadials (HSs), when temperature decreased by up to 6 to 10 °C relative to today. This magnitude of cooling is much greater than estimates derived from Caribbean marine records and model simulations. The extreme dry and cold conditions during HSs in the lowland Central America were associated with fresh water forcing in the North Atlantic, which led to reduced Atlantic Meridional Overturning Circulation, cooling of the North Atlantic, southern advance of sea-ice, and southward shift of the Intertropical Convergence Zone. Although some models correctly predict the sign of temperature and precipitation changes, they consistently underestimate the degree of observed cooling and decreased precipitation over land in lowland Central America

    Provenance of surface sediments along the southeastern Adriatic coast off Italy: An overview

    No full text
    Multi-proxy studies are necessary to understand sediment composition and related provenance on continental shelfs. Here it is shown that the spatial distribution of geochemical composition and grain size for surface sediments along the southeastern Italian coast is related to provenance and mechanisms influencing sediment pathways. A northern Adriatic/Italian provenance can be distinguished from a southern Apennine river source. This is done independent of grain size using the element ratios Ce/Ni and Zr/Cr. Furthermore, the origin of organic matter is determined using bulk carbon isotopes and the C/N ratio. Integrating these results with those from complementary studies on δ18O and δ13C of Globigerinoides ruber (white), the BIT index, stable isotopes of plant waxes and dinoflagellate cyst distribution from the same set of samples reveals that: • Sediments from the northwestern Adriatic are transported as far southward as the Gallipoli shelf (eastern Gulf of Taranto) by the Western Adriatic Current (WAC) • Along the WAC, there is a consistent southward decrease in Po river/northern Apennines provenance and a concomitant decrease in terrestrial (soil) organic matter (OM), whereas the percentage of marine OM increases. • The provenance for Gallipoli shelf sediments is for \~80% attributed to Po River/northern Apennines sources and for \~20% to southern Italian sources. • OM in the eastern Gulf of Taranto contains more marine OM than other areas within the WAC, whereas OM and sediments from the western part of the Gulf of Taranto have a more local, riverine provenan

    Climate of the past 2500 years in the Gulf of Taranto, central Mediterranean Sea: A high-resolution climate reconstruction based on δ18O and δ13C of Globigerinoides ruber (white)

    No full text
    We present a high-resolution isotope stratigraphy based on Globigerinoides ruber (white) over the past 2500 years in the Gulf of Taranto, central Mediterranean. G. ruber (white) reflects summer conditions in the Gulf of Taranto but is influenced by two major surface water masses: the Western Adriatic Current (WAC) and the Ionian Surface Water (ISW) and their variations on a decadal to multicentennial scale. Our analysis of the δ13C and δ18O of G. ruber (white) allows the distinction of several climatic periods: the ‘Roman Warm Period’ (RWP) (450–0 BC), with relatively wet and warm conditions and a higher influence of the WAC; the ‘Roman Classical Period’ (RCP) (AD 1–200) characterized by salinity increase resulting from circulation changes; the ‘Dark Ages Cold Period’ (DCP) (AD 500–750), where wetter conditions in the Gulf of Taranto region are coherent with an increase dominance of the WAC; the ‘Medieval Warm Period’ (MWP), with wet and warm conditions in the first, and a gradual drying in the second half; and finally, the transition from the MWP to the ‘Little Ice Age’ (LIA), which is characterized by continuing dry conditions

    Major Cation, Carbon System and Trace Element Chemistry in Pore Waters from a Depth Transect of Cores on the Iberian Margin: Implications for Paleoproxies

    No full text
    2014 American Geophysical Union Fall Meeting, 15-19 december 2014, San FranciscoA significant body of work exists on the chemistry of pore waters from DSDP and ODP drilling cores (e.g. Gieskes 1975; Sayles 1981) showing large gradients in sea salt cations and anions interpreted in terms of diagenetic reactions such as the formation of Mg-rich clays and dolomite formation (Higgins and Schrag, 2010). Another class of diagenetic reactions involves the breakdown of organic matter and trace element behaviour (Froelich et al., 1979). The translation of chemical gradients into fluxes requires estimates of pore water chemistry across the sea water - sediment surface boundary. Additionally, the use of the chemistry of benthic foraminiferal calcite for seawater paleochemistry requires estimation of the chemistry of pore waters which may differ from that of bottom seawater because of diagenetic reactions. In this work we have collected multi core samples from 10 core sites on cruise RRS James Cook JC089 on the southwest Iberian continental margin. Pore waters were extracted from the core surface and at 1 cm depth intervals down core (typically to ~40 cm depth) using Rhizon samplers and analysed for Alkalinity, DIC, ∂13C and Na, K, Mg, Ca, Li, Mn, Fe, Ba, B, Sr by atomic emission spectrophotometry as well as O2 penetration and pH by microelectrodes. This has allowed us to inspect chemical behavior at the bottom water - sediment interface. Some examples of results are a large gradient in ∂13C of DIC, the similarity of zero O2 penetration followed by an increase in Mn concentration and then decrease to zero, the similarity of Li to Mn and, in contrast to much DSDP/ODP work, Ca2+ and Mg2+both decrease with depth in pore waters near the sediment surfacePeer Reviewe

    Application of Clumped Isotope Thermometry to Benthic Foraminifera

    Get PDF
    Obtaining absolute temperatures of the ocean in deep time is complicated by the lack of constraints on seawater chemistry. Seawater salinity, carbonate ion concentration, δ18O, and elemental abundance changes may obscure widely applied paleoproxies. In addition, with foraminifera‐based proxies applied over long time scales or through major transitions, taxonomic turnover can impair the robustness of a record. While requiring larger sample sizes than most other proxies, the clumped isotope method is independent of seawater chemistry. Here we test if small benthic foraminifera precipitate their carbonate in equilibrium with respect to the clumped isotope thermometer and if there are any species‐specific vital effects. We find that benthic foraminifera fall on the same calibration line as the majority of carbonate minerals including inorganic calcite. In addition, we find no offsets that can be attributed to a species‐specific for any of the samples. This finding implies that a necessary amount of sample material can be obtained by aggregating over multiple taxa of benthic foraminifera and allows for the application of this proxy over major climatic transitions that coincide with seawater chemistry changes and foraminifera extinctions
    corecore