27 research outputs found
Extending the hydrophobic mismatch concept to amphiphilic membranolytic peptides
A series of nine amphiphilic, pore-forming α-helical KIA peptides (KIAGKIA repeats) with lengths between 14 and 28 residues were studied by solidstate 15N NMR to determine their alignment in oriented lipid bilayers. In a 2:1 mixture of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) with its corresponding 1- myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-MPC), which has a highly positive spontaneous curvature, the helix tilt angle was found to vary steadily with peptide length. The shortest peptide was aligned transmembrane and upright, while the longer ones successively became tilted away from the membrane normal. This behavior is in agreement with the hydrophobic matching concept, conceived so far only for hydrophobic helices. In 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, with a negative spontaneous curvature, all KIA peptides remained flat on the bilayer surface, while the cylindrical DMPC lipids permitted a slight tilt. Peptide insertion thus depends critically on the intrinsic lipid curvature, and helix orientation is then fine-tuned by membrane thickness. A refined toroidal pore model is proposed
Helix fraying and lipid-dependent structure of a short amphipathic membrane-bound peptide revealed by solid-state NMR
The amphipathic a-helical peptide KIA14 [(KIAGKIA)(2)-NH2] was studied in membranes using circular dichroism and solid-state NMR spectroscopy to obtain global as well as local structural information. By analyzing H-2 NMR data from 10 analogues of KIA14 that were selectively labeled with Ala-d(3), those positions that are properly folded into a helix could be determined within the membrane-bound peptide. The N-terminus was found to be unraveled, whereas positions 4-14 formed an ideal helix all the way to the C-terminus. The helicity did not change when Gly residues were replaced by Ala-d3 but was reduced when Ile was replaced, indicating that large hydrophobic residues are required for membrane binding and helix formation. The reduced helicity was strongly correlated with a decrease in peptide-induced leakage from lipid vesicles. The orientation of the short KIA14 peptide was assessed in several lipid systems and compared with that of the longer KIA21 sequence [(KIAGKIA)(3)-NH2]. In 1,2-dioleoylsn-glycero-3-phosphatidylcholine, both peptides are aligned flat on the membrane surface, whereas in 1,2-dimyristoyl-sn-glycero3-phosphatidylcholine (DMPC)/1-myristoy1-2-hydroxy-sn-glycero-3-phosphatidylcholine (lyso-MPC) both are inserted into the membrane in an upright orientation. These two types of lipid systems had been selected for their strongly negative and positive spontaneous curvature, respectively. We propose that in these cases, the peptide orientation is largely determined by the lipid properties. On the other hand, in plain DMPC and 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine, which have only a slight positive curvature, a marked difference in orientation is evident: the short KIA14 lies almost flat on the membrane surface, whereas the longer KIA21 is more tilted. We thus propose that out of the lipid systems tested here, DMPC (with hardly any curvature) is the least biased,lipid system in which peptide orientation and realignment can be studied, allowing to compare and discriminate the intrinsic effects of the properties of the peptides as such
Hydrophobic mismatch demonstrated for membranolytic peptides and their use as molecular rulers to measure bilayer thickness in native cells
Hydrophobic mismatch is a well-recognized principle in the interaction of transmembrane proteins with lipid bilayers. This concept was extended here to amphipathic membranolytic α-helices. Nine peptides with lengths between 14 and 28 amino acids were designed from repeated KIAGKIA motifs, and their helical nature was confirmed by circular dichroism spectroscopy. Biological assays for antimicrobial activity and hemolysis, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membranolytic activity. These data show that the formation of transmembrane pores is only possible under the condition of hydrophobic matching: the peptides have to be long enough to span the hydrophobic bilayer core to be able to induce vesicle leakage, kill bacteria, and cause hemolysis. By correlating the threshold lengths for biological activity with the biophysical results on model vesicles, the peptides could be utilized as molecular rulers to measure the membrane thickness in different cells
Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria
Resistance to all known antibiotics is a growing concern worldwide, and has renewed the interest in antimicrobial peptides, a structurally diverse class of amphipathic molecules that essentially act on the bacterial membrane. Propelled by the antimicrobial potential of this compound class, we have designed three new lipopeptides derived from polymyxin B, sp-34, sp-96 and sp-100, with potent antimicrobial activity against both Gram positive and Gram negative bacteria. The three peptides bind with high affinity to lipopolysaccharide as demonstrated by monolayer penetration and dansyl-displacement. The interaction with the cytoplasmic membrane has been elucidated by biophysical experiments with model membranes of POPG or POPE/POPG (6:4), mimicking the Gram positive and Gram negative bacterial membrane. Trp-based fluorescence experiments including steady-state, quenching, anisotropy and FRET, reveal selectivity for anionic phospholipids and deep insertion into the membrane. All three lipopeptides induce membrane fusion and leakage from anionic vesicles, a process that is favored by the presence of POPE. The molecules bind to zwitterionic POPC vesicles, a model of the eukaryotic membrane, but in a different way, with lower affinity, less penetration into the bilayer and no fusion or permeabilization of the membrane. Results in model membranes are consistent with flow cytometry experiments in Escherichia coli and Staphylococcus aureus using a membrane potential sensitive dye (bis-oxonol) and a nucleic acid dye (propidium iodide), suggesting that the mechanism of action is based on membrane binding and collapse of membrane integrity by depolarization and permeabilization. (C) 2015 Elsevier B.V. All rights reserved
A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain
Mode of action of antimicrobial peptides: long and short amphipathic alpha-helixes use different mechanisms
1 pag. -- 58th Annual Meeting of the Biophysical-Societ
Conjugation of a Ru(II) Arene Complex to Neomycin or to Guanidinoneomycin Leads to Compounds with Differential Cytotoxicities and Accumulation between Cancer and Normal Cells
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides
Design, synthesis and study of the biological and biophysical activity of antimicrobial peptides
[eng] The global emergence and spread of multidrug-resistant bacteria is an important public health issue. However, the antimicrobial pipeline remains unacceptably lean, in fact over the last 25 years, the number of antimicrobial agents that reach the market has sharply decreased. In this context, there is now a renewed interest in the search for drugs that have more than one target on the bacterial cell, rather than a specific chiral receptor or enzyme. Antimicrobial peptides (AMPs) are a class of antibiotics that have attracted great interest in the last few years because they rarely spur the development of resistant organisms as their mechanism of action involves disruption of the bacterial membrane. In this thesis we report the design, preparation and activity of new compounds based on the sequence of the polymyxins, a class of antibiotics highly active against Gramnegative bacteria, and used clinically as last resort treatment for multidrug-resistant pathogens. The compounds synthesized proved to be highly active against both Grampositive and Gram-negative bacteria, including several strains of resistant bacteria. Furthermore, biophysical experiments using liposomes and monolayers as model membranes and flow cytometry and transmission electron microscopy using bacteria were carried out to study the mechanism of action of these compounds. The results of the most active candidate indicate that an alternative, non-membrane dependent mechanism of action might be involved. In the second part of the thesis, a series of 9 peptides were designed and synthesized from repeated KIAGKIA motifs, based in the sequence of the antimicrobial peptide PGLa from the magainin family, with lengths between 14 and 28 amino acids. Circular dichroism spectroscopy showed that they all formed alpha-helices when found in a lipid environment. Biological assays for haemolysis and antimicrobial activity, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membrane activity. These data are fully consistent with the formation of transmembrane pores. Only peptides that are long enough to span the hydrophobic bilayer core can induce vesicle leakage, haemolysis, and inhibit bacterial growth. The shorter peptides do not show these effects. Solid-state NMR analysis in oriented bilayers with different thickness also demonstrated the need for a minimum peptide length to flip from a surface-bound alignment into a more inserted, possibly even transmembrane state. With increasing length the peptides start to tilt and perturb the bilayer. Since the threshold behaviour seen for biological activity closely matches the biophysical results, the peptides could be used as molecular rulers to determine the thickness of bacterial membranes, showing that E. coli (≈ 27 Å) < S. aureus and P. aeruginosa (≈ 30 Å) < E. faecalis (≈ 34 Å).[cat] L'aparició i propagació mundial de bacteris resistents a múltiples fàrmacs s’ha convertit en un problema clínic molt important. No obstant això, el nombre de nous antimicrobians que es troben en les últimes etapes de desenvolupament és molt baix. Els pèptids antimicrobians són una classe d’antibiòtics que han despertat gran interès en els últims anys pel fet que poques vegades estimulen el desenvolupament d’organismes genèticament resistents ja que la seva diana terapèutica és principalment la membrana bacteriana. En aquesta tesi es descriu el disseny, preparació i activitat de nous compostos basats en la seqüència de les polimixines, un tipus de pèptids antimicrobians altament potents contra bacteris Gram-negatius i usats clínicament. Els compostos sintetitzats van presentar elevada activitat tant en bacteris Gram positius com Gram-negatius, incloent diverses soques resistents. Addicionalment, experiments biofísics usant liposomes i monocapes com a models de membrana i citometria de flux i microscòpia electrònica de transmissió usant bacteris es van usar per estudiar el mecanisme d’acció d’aquests compostos. Els resultats del candidat més actiu semblen indicar que presenta un mecanisme d’acció alternatiu on la membrana bacteriana no és l’única diana terapèutica. En la segona part de la tesi, es descriu el disseny i síntesi d’una sèrie de 9 pèptids, basats en la seqüència del pèptid antimicrobià PGLa de la família de les magainines. Els pèptids alfa-helicoïdals (vist mitjançant l’ús de dicroïsme circular), presenten repeticions del heptàmer KIAGKIA, amb llargades de 14 a 28 aminoàcids. Assaigs biològics, de fluorescència i de RMN de fases condensades es van usar per relacionar la llargada peptídica amb la activitat en la membrana. Les dades obtingudes són consistents amb la formació de porus transmembrana, només aquells pèptids prou llargs per travessar la bicapa lipídica indueixen permeabilització, hemòlisi i inhibeixen el creixement bacterià mentre que els pèptids curts no mostren aquests efectes. L’anàlisi usant RMN de fases condensades amb lípids de diferent llargada també va mostrar la necessitat d’una llargada mínima dels pèptids per passar d’un estat superficial a un estat més inserit, probablement transmembrana. Atès que els llindars observats per a l'activitat biològica coincideixen estretament amb els resultats biofísics, els pèptids van ser utilitzats com a regles moleculars per determinar el gruix de les membranes bacterianes, és a dir E. coli (≈ 27 Å) < S. aureus i P. aeruginosa (≈ 30 Å) < E. faecalis (≈ 34 Å