22 research outputs found

    Searching For A Nondiagonal Mass Varying Mechanism In The νμ-ντ System

    Get PDF
    We use atmospheric neutrino data and MINOS data to constrain the MaVaN (mass varying neutrinos) mechanism. The MaVaN model was largely studied in cosmology scenarios and comes from the coupling of the neutrinos with a neutral scalar depending on the local matter density. For atmospheric neutrinos, this new interaction affects the neutrino propagation inside the Earth, and as consequence, induces modifications in their oscillation pattern. To perform such test for a nonstandard oscillation mechanism with a nondiagonal neutrino coupling in the mass basis, we analyze the angular distribution of atmospheric neutrino events as seen by the Super-Kamiokande experiment for the events in the sub-GeV and multi-GeV range and muon neutrinos (antineutrinos) in the MINOS experiment. From the combined analysis of these two sets of data we obtain the best fit for Δm322=2.45×10-3 eV2, sin2(θ23)=0.42 and MaVaN parameter α32=0.28 with modest improvement, Δχ2=1.8, over the standard oscillation scenario. The combination of MINOS data and Super-Kamiokande data prefers small values of MaVaN parameter α32<0.31 at 90% C. L. © 2014 American Physical Society.901ICTP; Abdus Salam International Centre for Theoretical PhysicsTauber, J., (2013) Astron. Astrophys., , (Planck Collaboration), doi: 10.1051/0004-6361/201321529. AAEJAF 0004-6361Jae, A., (2013) Astron. Astrophys., , (Planck Collaboration), doi: 10.1051/0004-6361/201321546. AAEJAF 0004-6361Tegmark, M., Eisenstein, D.J., Strauss, M.A., Weinberg, D.H., Blanton, M.R., Frieman, J.A., Fukugita, M., York, D.G., Cosmological constraints from the SDSS luminous red galaxies (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (12), p. 123507. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.123507&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.123507Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Kirshner, R.P., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant (1998) Astronomical Journal, 116 (3), pp. 1009-1038. , DOI 10.1086/300499Perlmutter, S., (1999) Astrophys. J., 517, p. 565. , (Supernova Cosmology Project Collaboration),. ASJOAB 0004-637X 10.1086/307221Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Walton, N., The supernova legacy survey: Measurement of ΩM, ΩΛand w from the first year data set (2006) Astronomy and Astrophysics, 447 (1), pp. 31-48. , DOI 10.1051/0004-6361:20054185Einstein, A., (1917) Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917, p. 142Weinberg, S., (1989) Rev. Mod. Phys., 61, p. 1. , RMPHAT 0034-6861 10.1103/RevModPhys.61.1Dolgov, A.D., (2004) Proceedings of 18th les Rencontres de Physique de la Vallee d'Aoste, 34. , in, Frascati Physics Series, edited by M. Greco (INFN, Frascati, Rome), Vol.Fardon, R., Nelson, A.E., Weiner, N., J. Cosmol. Astropart. Phys., 2004 (10), p. 005. , JCAPBP 1475-7516 10.1088/1475-7516/2004/10/005Kaplan, D.B., Nelson, A.E., Weiner, N., (2004) Phys. Rev. Lett., 93, p. 091801. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.091801Gu, P., Wang, X., Zhang, X., Dark energy and neutrino mass limits from baryogenesis (2003) Physical Review D, 68 (8), p. 087301. , DOI 10.1103/PhysRevD.68.087301Bi, X.-J., Gu, P., Wang, X., Zhang, X., Thermal leptogenesis in a model with mass varying neutrinos (2004) Physical Review D, 69 (11), p. 113007. , DOI 10.1103/PhysRevD.69.113007Afshordi, N., Zaldarriaga, M., Kohri, K., (2005) Phys. Rev. D, 72, p. 065024. , PRVDAQ 1550-7998 10.1103/PhysRevD.72.065024Honda, M., Takahashi, R., Tanimoto, M., J. High Energy Phys., 2006 (1), p. 042. , JHEPFG 1029-8479 10.1088/1126-6708/2006/01/042Barger, V., Huber, P., Marfatia, D., Solar mass-varying neutrino oscillations (2005) Physical Review Letters, 95 (21), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.211802, 211802Cirelli, M., Gonzalez-Garcia, M.C., Pena-Garay, C., Mass varying neutrinos in the Sun (2005) Nuclear Physics B, 719 (1-2), pp. 219-233. , DOI 10.1016/j.nuclphysb.2005.04.034, PII S0550321305003299Gonzalez-Garcia, M.C., De Holanda, P.C., Zukanovich Funchal, R., (2006) Phys. Rev. D, 73, p. 033008. , PRVDAQ 1550-7998 10.1103/PhysRevD.73.033008De Holanda, P.C., J. Cosmol. Astropart. Phys., 2009 (7), p. 024. , JCAPBP 1475-7516 10.1088/1475-7516/2009/07/024Rossi-Torres, F., Guzzo, M.M., De Holanda, P.C., Peres, O.L.G., (2011) Phys. Rev. D, 84, p. 053010. , PRVDAQ 1550-7998 10.1103/PhysRevD.84.053010Carneiro, M.F., De Holanda, P.C., (2013) Adv. High Energy Phys., 2013, p. 293425. , 1687-7357 10.1155/2013/293425Shiraishi, K.K., (2006), http://www-sk.icrr.u-tokyo.ac.jp/doc/sk/pub/, Ph.D. thesis, University of WashingtonAbe, K., (2008) Phys. Rev. D, 77, p. 052001. , (Super-Kamiokande Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.77. 052001Adamson, P., (2013) Phys. Rev. Lett., 110, p. 251801. , (MINOS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.251801Adamson, P., (2011) Phys. Rev. Lett., 106, p. 181801. , (MINOS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.106.181801In the MaVaN mechanism, neutrino and antineutrinos have the same oscillation probabilityGratieri, D.R., (2012), http://webbif.ifi.unicamp.br/tesesOnline/teses/IF1564.pdf, Ph.D. thesis, State University at Campinas (UNICAMP)Dziewonski, A.D., Anderson, D.L., (1981) Phys. Earth Planet. Inter., 25, p. 297. , PEPIAM 0031-9201 10.1016/0031-9201(81)90046-7For a good reference on kinematical constraints, see [30]Goldanski, V.I., Rosenthal, I.L., (1961) Kinematics of Nuclear Reactions, , (Oxford University Press, New York)Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., Sanuki, T., (2007) Phys. Rev. D, 75, p. 043006. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.043006Gonzalez-Garcia, M.C., Nunokawa, H., Peres, O.L.G., Stanev, T., Valle, J.W.F., (1998) Phys. Rev. D, 58, p. 033004. , PRVDAQ 0556-2821 10.1103/PhysRevD.58.033004Strumia, A., Vissani, F., (2003) Phys. Lett. B, 564, p. 42. , PYLBAJ 0370-2693 10.1016/S0370-2693(03)00616-6Paschos, E.A., Yu, J.Y., Neutrino interactions in oscillation experiments (2002) Physical Review D, 65 (3), p. 033002. , DOI 10.1103/PhysRevD.65.033002Hosaka, J., Ishihara, K., Kameda, J., Koshio, Y., Minamino, A., Mitsuda, C., Miura, M., Saji, C., Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (3), p. 032002. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.032002&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.032002http://www-numi.fnal.gov/PublicInfo/forscientists.html, The (Equation presented) is avaliable inGonzalez-Garcia, M.C., Maltoni, M., Salvado, J., Schwetz, T., J. High Energy Phys., 2012 (12), p. 123. , JHEPFG 1029-8479 10.1007/JHEP12(2012)12

    Época de coleta e ácido indolbutírico no enraizamento de estacas de espirradeira (Nerium oleander L.)

    Get PDF
    A espirradeira (Nerium oleander L.) é uma importante espécie arbórea ornamental, muito utilizada no meio urbano. É propagada por estacas, porém a porcentagem de enraizamento é baixa e não há estudos sobre fatores que influenciam nesse processo. Este trabalho teve, portanto, o objetivo de estudar o efeito da época de coleta e do ácido indolbutírico (AIB) no enraizamento de estacas de duas variedades de espirradeira (Nerium oleander L.), determinadas pela coloração das flores (rosa e branca). O experimento foi instalado na UNESP, Campus de Jaboticabal/SP, no verão e no inverno. O delineamento experimental foi em blocos casualizados em esquema fatorial 2 x 2 x 4 (duas variedades combinadas com duas estações do ano e quatro concentrações de AIB - 0, 1.000, 2.000 e 4.000 mg kg-1). As avaliações foram realizadas 60 dias após a estaquia, sendo estas as variáveis: porcentagem de enraizamento, número médio, comprimento e massa de matéria seca de raízes. Concluiu-se que o enraizamento de ambas as variedades de espirradeira (rosa e branca) foi superior no verão. A variedade de flores rosas apresentou maior número e comprimento médio de raízes no verão, porém as maiores porcentagens de enraizamento e massa de matéria seca de raízes foram encontradas no inverno. O ácido indolbutírico foi efetivo para aumentar a porcentagem de enraizamento nas concentrações testadas de 1.000 e 2.000 mg kg-1; maior número, comprimento e massa de matéria seca de raízes foram obtidos na concentração de 2.000 mg kg-1

    Spatial and temporal evaluations of the liquid argon purity in ProtoDUNE-SP

    Get PDF
    Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by the cathode plane assembly, which is biased to create an almost uniform electric field in both volumes. The DUNE Far Detector modules must have robust cryogenic systems capable of filtering argon and supplying the TPC with clean liquid. This paper will explore comparisons of the argon purity measured by the purity monitors with those measured using muons in the TPC from October 2018 to November 2018. A new method is introduced to measure the liquid argon purity in the TPC using muons crossing both drift volumes of ProtoDUNE-SP. For extended periods on the timescale of weeks, the drift electron lifetime was measured to be above 30 ms using both systems. A particular focus will be placed on the measured purity of argon as a function of position in the detector

    Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning

    Get PDF
    The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours

    DUNE Phase II: scientific opportunities, detector concepts, technological solutions

    Get PDF
    The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos

    SEEKING HIGH DENSITY EFFECTS IN LEPTON-A PROCESSES

    No full text

    Constraining The Violation Of The Equivalence Principle With Icecube Atmospheric Neutrino Data

    No full text
    The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower-energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino data to constrain the violation of equivalence principle (VEP) in the framework of three neutrinos with nonuniversal gravitational couplings. In this scenario the effect of the VEP on neutrino oscillation probabilities can be parametrized by two parameters, Δγ21≡ γ2-γ1 and Δγ31≡γ3-γ1, where γi's denote the coupling of neutrino mass eigenstates to the gravitational field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the two-dimensional allowed regions in the (φΔγ21,φΔγ31) plane, we obtain the upper limits |φΔγ21|<9.1×10-27 (at 90% C.L.), which improves the previous limit by ∼4 orders of magnitude, and |φΔγ31| 6×10-27 (at 90% C.L.), which improves the current limit by ∼1 order of magnitude. Also we discuss in detail and analytically the effect of the VEP on neutrino oscillation probabilities. © 2014 American Physical Society.8911Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , (Freeman, San Francisco)Wagner, T.A., Schlamminger, S., Gundlach, J.H., Adelberger, E.G., (2012) Classical Quantum Gravity, 29, p. 184002. , CQGRDG 0264-9381 10.1088/0264-9381/29/18/184002Overduin, J., Mitcham, J., Warecki, Z., (2014) Classical Quantum Gravity, 31, p. 015001. , CQGRDG 0264-9381 10.1088/0264-9381/31/1/015001Hohensee, M.A., Leefer, N., Budker, D., Harabati, C., Dzuba, V.A., Flambaum, V.V., (2013) Phys. Rev. Lett., 111, p. 050401. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.050401Horvat, R., (1998) Mod. Phys. Lett. A, 13, p. 2379. , MPLAEQ 0217-7323 10.1142/S0217732398002539Barkovich, M., Casini, H., D'Olivo, J.C., Montemayor, R., Pulsar motions from neutrino oscillations induced by a violation of the equivalence principle (2001) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 506 (1-2), pp. 20-26. , DOI 10.1016/S0370-2693(01)00401-4, PII S0370269301004014Damour, T., Schaefer, G., (1991) Phys. Rev. Lett., 66, p. 2549. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.2549Damour, T., arXiv:gr-qc/0109063Damour, T., Piazza, F., Veneziano, G., (2002) Phys. Rev. Lett., 89, p. 081601. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.081601Armendariz-Picon, C., Penco, R., (2012) Phys. Rev. D, 85, p. 044052. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.044052Damour, T., Donoghue, J.F., (2010) Classical Quantum Gravity, 27, p. 202001. , CQGRDG 0264-9381 10.1088/0264-9381/27/20/202001Carroll, S.M., Mantry, S., Ramsey-Musolf, M.J., Stubbs, C.W., (2009) Phys. Rev. Lett., 103, p. 011301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.011301Olmo, G.J., Violation of the equivalence principle in modified theories of gravity (2007) Physical Review Letters, 98 (6), p. 061101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.061101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.061101Adunas, G.Z., Rodriguez-Milla, E., Ahluwalia, D.V., (2000) Phys. Lett. B, 485, p. 215. , PYLBAJ 0370-2693 10.1016/S0370-2693(00)00697-3Gasperini, M., (1988) Phys. Rev. D, 38, p. 2635. , PRVDAQ 0556-2821 10.1103/PhysRevD.38.2635Gasperini, M., (1989) Phys. Rev. D, 39, p. 3606. , PRVDAQ 0556-2821 10.1103/PhysRevD.39.3606Halprin, A., Leung, C.N., (1991) Phys. Rev. Lett., 67, p. 1833. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.1833Pantaleone, J.T., Halprin, A., Leung, C.N., (1993) Phys. Rev. D, 47, pp. R4199. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.R4199Butler, M.N., Nozawa, S., Malaney, R.A., Boothroyd, A.I., (1993) Phys. Rev. D, 47, p. 2615. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.2615Bahcall, J.N., Krastev, P.I., Leung, C.N., (1995) Phys. Rev. D, 52, p. 1770. , PRVDAQ 0556-2821 10.1103/PhysRevD.52.1770Halprin, A., Leung, C.N., Pantaleone, J.T., (1996) Phys. Rev. D, 53, p. 5365. , PRVDAQ 0556-2821 10.1103/PhysRevD.53.5365Mureika, J.R., (1997) Phys. Rev. D, 56, p. 2408. , PRVDAQ 0556-2821 10.1103/PhysRevD.56.2408Mansour, S.W., Kuo, T.-K., (1999) Phys. Rev. D, 60, p. 097301. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.097301Gago, A.M., Nunokawa, H., Zukanovich Funchal, R., (2000) Phys. Rev. Lett., 84, p. 4035. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4035Casini, H., D'Olivo, J.C., Montemayor, R., (2000) Phys. Rev. D, 61, p. 105004. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.105004Majumdar, D., Raychaudhuri, A., Sil, A., Golar neutrino results and violation of the equivalence principle: An analysis of the existing data and predictions for SNO (2001) Physical Review D, 63 (7), p. 073014. , DOI 10.1103/PhysRevD.63.073014Mikheev, S.P., Smirnov, A.Y., (1986) Nuovo Cimento Soc. Ital. Fis., 9, p. 17. , NIFCAS 0390-5551 10.1007/BF02508049Mikheev, S.P., Smirnov, A.Y., (1985) Yad. Fiz., 42, p. 1441. , IDFZA7 0044-0027Mikheev, S.P., Smirnov, A.Y., (1985) Sov. J. Nucl. Phys., 42, p. 913. , [, ()]. SJNCAS 0038-5506Minakata, H., Nunokawa, H., (1995) Phys. Rev. D, 51, p. 6625. , PRVDAQ 0556-2821 10.1103/PhysRevD.51.6625Valdiviesso, G.A., Guzzo, M.M., De Holanda, P.C., (2011) Phys. Lett. B, 701, p. 240. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.05.057Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 421, p. 245. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00013-6Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 433, p. 82. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00706-0Foot, R., Leung, C.N., Yasuda, O., (1998) Phys. Lett. B, 443, p. 185. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)01311-2Fogli, G.L., Lisi, E., Marrone, A., Scioscia, G., (1999) Phys. Rev. D, 60, p. 053006. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.053006Gonzalez-Garcia, M.C., Maltoni, M., Atmospheric neutrino oscillations and new physics (2004) Physical Review D, 70 (3), p. 033010. , DOI 10.1103/PhysRevD.70.033010Gonzalez-Garcia, M.C., Halzen, F., Maltoni, M., Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data (2005) Physical Review D - Particles, Fields, Gravitation and Cosmology, 71 (9), pp. 1-13. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRD:71, DOI 10.1103/PhysRevD.71.093010, 093010Battistoni, G., Becherini, Y., Cecchini, S., Cozzi, M., Dekhissi, H., Esposito, L.S., Giacomelli, G., Togo, V., Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data (2005) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 615 (1-2), pp. 14-18. , DOI 10.1016/j.physletb.2005.04.010, PII S0370269305004867Morgan, D., Winstanley, E., Brunner, J., Thompson, L.F., (2008) Astropart. Phys., 29, p. 345. , APHYEE 0927-6505 10.1016/j.astropartphys.2008.03.005Abbasi, R., (2009) Phys. Rev. D, 79, p. 102005. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.79.102005Pakvasa, S., Simmons, W.A., Weiler, T.J., (1989) Phys. Rev. D, 39, p. 1761. , 1761. PRVDAQ 0556-2821 10.1103/PhysRevD.39.1761Guzzo, M.M., Nunokawa, H., Tomas, R., (2002) Astropart. Phys., 18, p. 277. , APHYEE 0927-6505 10.1016/S0927-6505(02)00149-4Minakata, H., Smirnov, A.Y., (1996) Phys. Rev. D, 54, p. 3698. , PRVDAQ 0556-2821 10.1103/PhysRevD.54.3698Iida, K., Minakata, H., Yasuda, O., (1993) Mod. Phys. Lett. A, 8, p. 1037. , MPLAEQ 0217-7323 10.1142/S021773239300252XMann, R.B., Sarkar, U., (1996) Phys. Rev. Lett., 76, p. 865. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.865Abbasi, R., (2011) Phys. Rev. D, 83, p. 012001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.83.012001Aartsen, M.G., (2013) Phys. Rev. Lett., 111, p. 081801. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.111.081801Will, C.M., (1993) Theory and Experiment in Gravitational Physics, , (Cambridge University Press, Cambridge, England)Dziewonski, A.D., Anderson, D.L., (1981) Phys. Earth Planet. Inter., 25, p. 297. , PEPIAM 0031-9201 10.1016/0031-9201(81)90046-7Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J., Schwetz, T., J. High Energy Phys., 2012 (12), p. 123. , JHEPFG 1029-8479 10.1007/JHEP12(2012)123Aartsen, M.G., (2014) Phys. Rev. D, 89, p. 102001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.89.102001Aartsen, M.G., (2013) Phys. Rev. Lett., 110, p. 151105. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.151105Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., Sanuki, T., (2007) Phys. Rev. D, 75, p. 043006. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.043006Sajjad Athar, M., Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., (2013) Phys. Lett. B, 718, p. 1375. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.12.016Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2012 (11), p. 041. , JCAPBP 1475-7516 10.1088/1475-7516/2012/11/041Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (6), p. 026. , JHEPFG 1029-8479 10.1007/JHEP06(2013)026Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (12), p. 014. , JHEPFG 1029-8479 10.1007/JHEP12(2013)014Abbasi, R., (2012) Astropart. Phys., 35, p. 615. , (IceCube Collaboration),. APHYEE 0927-6505 10.1016/j.astropartphys.2012. 01.004Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2013 (7), p. 048. , JCAPBP 1475-7516 10.1088/1475-7516/2013/07/048Colladay, D., Kostelecky, V.A., (1997) Phys. Rev. D, 55, p. 6760. , PRVDAQ 0556-2821 10.1103/PhysRevD.55.6760Colladay, D., Kostelecky, V.A., (1998) Phys. Rev. D, 58, p. 116002. , PRVDAQ 0556-2821 10.1103/PhysRevD.58.116002Kostelecky, A.V., Tasson, J.D., (2011) Phys. Rev. D, 83, p. 016013. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.016013Kostelecky, V.A., Mewes, M., Lorentz and CPT violation in neutrinos (2004) Physical Review D, 69 (1), p. 016005. , DOI 10.1103/PhysRevD.69.016005Alan Kostelecky, V., Mewes, M., Lorentz and CPT violation in the neutrino sector (2004) Physical Review D, 70 (3), p. 031902. , DOI 10.1103/PhysRevD.70.031902Kostelecky, V.A., Mewes, M., (2004) Phys. Rev. D, 70, p. 076002. , PRVDAQ 1550-7998 10.1103/PhysRevD.70.076002Diaz, J.S., Kostelecky, V.A., Mewes, M., (2009) Phys. Rev. D, 80, p. 076007. , PRVDAQ 1550-7998 10.1103/PhysRevD.80.076007Katori, T., Alan Kostelecky, V., Tayloe, R., Global three-parameter model for neutrino oscillations using Lorentz violation (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (10), p. 105009. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.105009&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.10500
    corecore