69 research outputs found

    Collision damping in the pi 3He -> d'N reaction near the threshold

    Full text link
    We present a simple quantum mechanical model exploiting the optical potential approach for the description of collision damping in the reaction pi 3He -> d'N near the threshold, which recently has been measured at TRIUMF. The influence of the open d'N -> NNN channel is taken into account. It leads to a suppression factor of about ten in the d' survival probability. Applications of the method to other reactions are outlined.Comment: RevTeX4, 14 pages, 3 Postscript figures, uses epsfig.sty, to appear in Phys.Rev.

    Functional renormalization group for d-wave superconductivity in Hubbard type models

    Full text link
    The temperature dependence of d-wave superconducting order for two dimensional fermions with d-wave attraction is investigated by means of the functional renormalization group with partial bosonization. Below the critical temperature T_c we find superconductivity, a gap in the electron propagator and a temperature dependent anomalous dimension. At T_c the renormalized "superfluid density" jumps and the approach to T_c from above is characterized by essential scaling. These features are characteristic for a phase transition of the Kosterlitz-Thouless (KT) type.Comment: 5 pages, 4 figures, references added, discussion improve

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    Optimization of the derivative expansion in the nonperturbative renormalization group

    Get PDF
    We study the optimization of nonperturbative renormalization group equations truncated both in fields and derivatives. On the example of the Ising model in three dimensions, we show that the Principle of Minimal Sensitivity can be unambiguously implemented at order 2\partial^2 of the derivative expansion. This approach allows us to select optimized cut-off functions and to improve the accuracy of the critical exponents ν\nu and η\eta. The convergence of the field expansion is also analyzed. We show in particular that its optimization does not coincide with optimization of the accuracy of the critical exponents.Comment: 13 pages, 9 PS figures, published versio

    A non perturbative approach of the principal chiral model between two and four dimensions

    Full text link
    We investigate the principal chiral model between two and four dimensions by means of a non perturbative Wilson-like renormalization group equation. We are thus able to follow the evolution of the effective coupling constants within this whole range of dimensions without having recourse to any kind of small parameter expansion. This allows us to identify its three dimensional critical physics and to solve the long-standing discrepancy between the different perturbative approaches that characterizes the class of models to which the principal chiral model belongs.Comment: 5 pages, 1 figure, Revte

    The strategic economic governance of Greater Manchester's local labour market by the local state: implications for young workers

    Get PDF
    This article explores how work and employment conditions for young workers are affected by the actions of the state at the spatial scale of the locality. The article argues that young workers have experienced deteriorating labour market conditions following shifts in the form which capitalist accumulation takes in the UK. This shift has altered the composition of the national state which has in turn led to changes in how it regulates both local labour markets and the economic strategies of the local state. One result of these changes is the diffusion of neoliberal labour market reforms which have led to negative material consequences for young workers; these are manifest in the expansion of low-waged work concentrated in a small number of sectors, and characterized by an intensified labour process

    Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

    Get PDF
    International audienceThe mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulation as a computational microscope allows investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy including sample preparation, measurement and analysis of force spectroscopy using AFM and its interpretation in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging of computational tools with experimental technique

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts

    Overview of ASDEX upgrade results in view of ITER and DEMO

    Get PDF
    Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation
    corecore