8,423 research outputs found

    Effect of silicate ions on electrode overvoltage

    Get PDF
    The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes

    Haze in the Klang Valley of Malaysia

    Get PDF
    Continuous measurements of dry aerosol light scattering (Bsp) were made at two sites in the Klang Valley of Malaysia between December 1998 and December 2000. In addition 24-h PM2.5 samples were collected on a one-day-in-six cycle and the chemical composition of the aerosol was determined. Periods of excessive haze were defined as 24-h average Bsp values greater than 150 Mm-1 and these occurred on a number of occasions, between May and September 1999, during May 2000, and between July and September 2000. The evidence for smoke being a significant contributor to aerosol during periods of excessive haze is discussed and includes features of the aerosol chemistry, the diurnal cycle of Bsp, and the coincidence of forest fires on Sumatra during the southwest (SW) monsoon period, as well as transport modelling for one week of the southwest Monsoon of 2000. The study highlights that whilst transboundary smoke is a major contributor to poor visibility in the Klang Valley, smoke from fires on Peninsular Malaysia is also a contributor, and at all times, the domestic source of secondary particle production is present

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas

    ELOGI DEL RECORD

    Get PDF

    A General Approach to Optomechanical Parametric Instabilities

    Full text link
    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation
    • …
    corecore