
A Generic Persistence Model for (C)LP Systems
(and two useful implementations)

J. Correas1 , J. M. Gómez1 , M. Carro 1 , D. Cabeza1 , and M. Hermenegildo1 '2

2

1 School of Computer Science, Technical University of Madrid (UPM)
Depts. of Comp. Science and El. and Comp. Eng., U. of New México (UNM)

Abstract. This paper describes a model of persistence in (C)LP lan-
guages and two different and practically very useful ways to implement
this model in current systems. The fundamental idea is that persistence
is a characteristic of certain dynamic predicates (Le., those which encap-
sulate state). The main effect of declaring a predicate persistent is that
the dynamic changes made to such predicates persist from one execution
to the next one. After proposing a syntax for declaring persistent predi-
cates, a simple, file-based implementation of the concept is presented and
some examples shown. An additional implementation is presented which
stores persistent predicates in an external datábase. The abstraction of
the concept of persistence from its implementation allows developing ap-
plications which can store their persistent predicates alternatively in files
or databases with only a few simple changes to a declaration stating the
location and modality used for persistent storage. The paper presents
the model, the implementation approach in both the cases of using files
and relational databases, a number of optimizations of the process (us­
ing information obtained from static global analysis and goal clustering),
and performance results from an implementation of these ideas.

Keywords: Prolog, Databases, Persistency, Query Optimization

1 Introduct ion

State is traditionally implemented in Prolog and other (C)LP systems through
the built-in ability to modify predicate deñnitions dynamically at runt ime. 3 Gen-
erally, fact-only dynamic predicates are used to store information in a way tha t
provides global visibility (within a module) and preserves information through
backtracking. This infernal rule datábase, albeit a non-declarative component

3 In the ISO standard these predicates have to be marked explicitly as dynamic.

of Prolog, has practical applications from the point of view of the needs of a
programming language.4

However, Prolog internal rule datábase implementations associate the lifetime
of the internal state with that of the process, Le., they deal only with what
happens when a given program is running and changes its private rule datábase.
Indeed, the Prolog rule datábase lacks an important feature: data persistence. By
data persistence we refer to rule datábase modiñcations surviving across program
executions (and, as a later evolution, maybe being accessible to other programs
-even concurrently). This feature, if needed, must be explicitly implemented by
the programmer in traditional systems.

In this paper we present a conceptual model of persistence by proposing the
concept of persistent predicates, and a number of implementations thereof. A
persistent predicate is a special kind of dynamic, data predicate that "resides"
in some persistent médium (such as a set of ñles, a datábase, etc.) and which is
typically external to the program using such predicates. The main effect is that
any changes made to a persistent predicate from a program "survive" across
executions , Le., if the program is halted and restarted the predicate that the
new process sees is in precisely the same state as it was when the oíd process
was halted (provided no change was made in the meantime to the storage by
other processes or the user). Notably, persistent predicates appear to a program
as ordinary dynamic predicates: calis to these predicates can appear in clause
bodies in the usual way without any need to wrap or mark them as "external"
or "datábase" calis and updates to persistent predicates can be made calling
the standard asserta/1, assertz/1 , retract /1 , etc. predicates used for ordi­
nary dynamic predicates, but suitably modiñed. Updates to persistent predicates
are guaranteed to be atomic and transactional, in the sense that if an update
terminates, then the external storage has deñnitely been modiñed. This model
provides a high degree of conceptual compatibility with previously existing pro­
grams which access only the local rule datábase,5 while bringing at the same
time several practical advantages:

— The state of dynamic predicates is, at all times, reflected in the state of the
external storage device. This provides security against possible data loss due
to, for example, a system crash.

— Since accesses to persistent predicates are viewed as regular accesses to the
Prolog rule datábase, analyzers (and related tools) for full Prolog can deal
with them in the same way as with the standard dynamic predicates, result-
ing in a series of optimizations, some of which will be shown. Using explicit
accesses to ñles or external databases through low-level library predicates
would make this task much more difficult.

Finally, perhaps the most interesting advantage of the notion of persistent
predicates is that it abstracts away how the predicate is actually stored. Thus,
a program can use persistent predicates stored in ñles or in external relational

4 Examples of recent proposals to extend its applicability include using it to model
reasoning in a changing world [1], and as the basis for communication of concurrent
processes [2] and objects [3].

6 The "logical view" of updates [4] is not enforced in the case of using a relational
datábase as storage, in the same way as with concurrent data predicates [2].

databases interchangeably, and the type of storage used for a given predícate
can be changed without having to modify the program except for replacing a
single declaration in the whole program. The program always contains standard
internal datábase access and aggregation predicates, independently of whether
the storage médium is the internal Prolog rule datábase, ñle-based, or database-
based. It also minimizes impact on the host language, as the semantics of the
access to the rule datábase is compatible with that of Prolog.

Our approach builds heavily on the well known and cióse relationship between
(Constraint) Logic Programming and relational databases [5]: for example, op-
erations in the relational algebra can be easily modeled using Horn clauses (plus
negation for some operations), where datábase tables are seen as fact-only pred­
icates, and every record is seen as a fact. On the other hand, the embedding into
Prolog allows combining full Prolog code (beyond DATALOG) with the accesses
to the persistent predicates.

A number of current Prolog systems offer external datábase interfaces, but
often with ad-hoc access builtins. In those cases in which some kind of trans-
parency is provided (e.g. Quintus ProDBI, SICStus and LPA Prodata, ECLiPSe),
the system just allows performing queries on tables as if they were Prolog predi-
cates, but does not allow updating tables using the same transparent approach.
We argüe that none of these cases achieve the same level of flexibility and seam-
less integration with Prolog achieved in our proposal.

Implementations of this model have been used in real-world applications such
as the Amos tool (see http://www.amosproject.org), part of a large, ongoing
international project aimed at facilitating the reuse of Open Source code by
means of a powerful, ontology-based search engine working on a large datábase
of code information.

2 A Proposal for Persistent Predicates in Prolog

We will now deñne a syntax for the declaration of persistent predicates. We will
also present briefly two different implementations of persistent predicates which
differ on the storage médium (ñles of Prolog terms in one case, and an external
relational datábase in the other). Both implementations aim at providing a se­
mantics compatible with that of the Prolog internal rule datábase, but enhanced
with persistence over program executions.

2.1 Declaring Persistent Predicates

The syntax that we propose for deñning persistent predicates is based on the
assertion language of Ciao Prolog [6], which allows expressing in a compact,
uniform way, types, modes, and, in general, different (even arbitrary) properties
of predicates.

In order to specify that a predicate is persistent we have to flag it as such,
and also to deñne where the persistent data is to be stored. Thus, a minimum
declaration is:

:- include(library(persdb)).

http://www.amosproject.org

: - pred employee/3 + p e r s i s t e n t (p a y r o l l) .
: - pred category/2 + p e r s i s t e n t (p a y r o l l) .

: - pe r s i s t en t_db(payro l l , f i l eO/home/c l ip /accoun t ing ')) .

The ñrst declaration states that the persistent datábase library is to be used to
process the source code ñle: the included code loads the persdb library support
predicate deñnitions, and defines the local operators and syntactic transforma-
tions that implement the persdb package. The second and third line state that
predicates employee/3 and salary/2 are persistent and that they live in the
storage médium to be referred to as payroll, while the fourth one defines which
type of storage médium the payroll identiñer refers to.6 It is the code in the
persdb package that processes the pers i s tent /1 and persistent_db/2 decla­
rations, and which provides the code to access the external storage and keeps
the information necessary to deal with it. In this particular case, the storage
médium is a disk file in the directory specified in the directive. The predicates
in Figure 2 use these declarations to compute the salary of some employee, and
to increment the number of days worked:

salary(Empl,Salary):-

employee(Empl,Categ,Days),
category(Categ,PerDay),

Salary is Days * PerDay.

one_more_day(Empl):-

retract(employee(Empl,Categ,Days)),
Daysl is Days + 1,

assert(employee(Empl,Categ,Daysl)).

Fig. 1. Accessing and updating a persistent predicate

If the external storage is to be kept in an SQL datábase, argument type in­
formation is required in order to créate the table (if the datábase is empty) and
also to check that the calis are made with compatible types. It is also necessary
to establish a mapping (views) between the predicate functor and arguments
and table ñame and columns. In this example, suitable declarations are:
: - i nc lude (l ib ra ry (pe r sdb)) .

: - pred employee/3 :: s t r i n g * s t r i n g * in t +
pers is tent (employee(ident , category, t ime) , p a y r o l l) .

: - pred category/2 :: s t r i n g * in t +
pers i s ten t (ca tegory(ca tegory , money), p a y r o l l) .

: - pe r s i s t en t_db(payro l l , db(paydb, admin, 'Pwd', 'db .comp.org ')) .

The db/4 structure indicates datábase ñame (paydb), datábase server
(db.comp.org), datábase user (admin) and password (Pwd). This information
is processed by the persdb package, and a number of additional formats can
be used. For example, the port for the datábase server can be specified (as in
' db. comp. org ' : 2020), the precise datábase brand can be noted (as, for example
odbc/4 or oracle/4 instead of the generic db/4), etc. This instructs the persdb
package to use different connection types or to genérate queries specialized for
particular SQL dialects. In addition, valúes for the relevant fields can also be
filled in at run time, which is useful for example to avoid storing sensitive infor-

6 The persistent_db/2 information can also be included in the argument of
persistent, but using persistent_db/2 declarations allows factoring out informa­
tion shared by several predicates.

http://db.comp.org

mation, such as password and user ñames, in program code. This can be done
using hook facts or predicates, which can be included in the source code, or
asserted by it, perhaps after consulting the user. These facts or predicates are
then called when needed to provide valúes for the arguments whose valué is not
speciñed in the declaration. For example, a declaration such as:
: - pe r s i s t en t_db(payro l l , db(paydb, p u s e r / l , ppwd/l, 'db .comp.org ')) .

would cali the hook predicates puser/l and ppwd/l, which are expected to be
deñned as puser (User) : - . . . and ppwd (Password) : -

Note also that, as mentioned before, the declarations corresponding to
employee/3 and category/2 specify the ñame of the table in the datábase
(which can be different from that of the predicate) and the ñame of each of its
columns. It may also have a type signature. If a table is already created in the
datábase, then this declaration of types is not strictly needed, since the system
will retrieve the schema from the datábase. However, it may still be useful so
that (compile-time or run-time) checking of calis to persistent predicates can be
performed. Furthermore, types and modes can be read and inferred by a global
analysis tool, such as, e.g., CiaoPP [6, 7], and used to optimize the generation of
SQL expressions and to remove superfluous runtime checks at compile time (see
Section 2.3).

A dynamic versión of the persistent declaration exists, which allows defin-
ing new persistent predicates on the fly, under program control. Also, in or-
der to provide greater flexibility, lower-level operations (of the kind available in
traditional Prolog-SQL interfaces) are also available, which allow establishing
datábase connections manually. These are the lower-level library operations the
above examples are compiled into. Finally, a persistent predicate can also be
made to correspond to a complex view of several datábase tables. For further
illustration, Figure 2 shows an example queue elements are kept as persistent
data facts so that the program state can be recovered in subsequent executions.

2.2 File-Based Implementation

The ñle-based implementation of persistent predicates provides a light-weight,
simple, and at the same time powerful form of persistence. It has the advantage
of being standalone in the sense that it does not require any external support
other than the ñle management capabilities provided by the operating system:
these persistent predicates are stored in ñles under direct control of the persistent
library. This implementation is especially useful when building small to medium-
sized standalone (C)LP applications which require persistent storage and which
may have to run in an environment where the existence of an external datábase
manager is not ensured. Also, it is very useful even while developing applica­
tions which will connect to databases, because it allows working with persistent
predicates maintained in ñles when developing or modifying the code and then
switching to using the external datábase for testing or "production" by simply
changing a declaration.

The implementation pursues at the same time efficiency and security. Each
predicate uses three ñles: the data file, which stores a base state for the predicate;
the operations file, which stores the differential between the base state and the
predicate state in the program (i.e., operations pending to be integrated into

http://comp.org'

Program Execution

: - module (queue, [main/0]) .
: - i nc lude (l ib ra ry (pe r sdb)) .

: - pred queue/1 +
p e r s i s t e n t (f i l e (' / t m p / q u e u e '))

main:-
write('Action:'),
read(A),

handle_action(A),
main.

handle_action(halt) :-
halt.

handle_action(in(Term)) :-

assertz(queue(Term)).
handle_action(out) :-

(retract(queue(Term))
-> write('Out ') , write(Term)

; writeCEMPTY! ')) , n i .
hand le_ac t ion(l i s t) : -

f indal l (T,queue(T) ,Contents) ,
wr i te ('Conten ts : ') ,wr i te (Cont

Fig. 2. Queue example and execution trace

the data ñle); and the backup file, which stores a security copy of the data ñle.
Such ñles, in plain ASCII format, can be edited by hand using any text editor,
or even easily read and written by other applications.

When no program is accessing the persistent predicate (because, e.g., no
program updating that particular predicate is running), the data ñle reflects
exactly the facts in the Prolog internal rule datábase. When any insertion or
deletion is performed, the corresponding change is made in the Prolog internal
rule datábase, and a record of the operation is appended to the operations ñle.
In this moment the data ñle does not reflect the state of the internal Prolog rule
datábase, but it can be reconstructed by applying the changes in the operations
ñle to the state in the data ñle. This strategy incurs only in a relatively small,
constant overhead per update operation (the alternative of keeping the data ñle
always up to date would lead to an overhead linear in the number of records in
it).

When a program using a ñle-based persistent predicate starts up, the data
ñle is ñrst copied to a backup ñle (preventing data loss in case of system crash
during this operation), and all the pending operations are performed on the
data ñle by loading it into memory, re-executing the updates recorded in the
operations ñle, and saving a new data ñle. The order in which the operations are
performed and the concrete O.S. facilities (e.g., ñle locks) used ensure that even
if the process aborts at any point in its execution, the data saved up to that
point can be completely recovered upon a successful restart. The data ñle can

;ents) ,nl.

$./queue
Action: in(first).

Action: in(second).
Action: list.

Contents: [first, second]
Action: halt.

$./queue
Action: out.
Out first
Action: list.
Contents: [second]
Action: out.
Out second
Action: out.
EMPTY!
Action: halt.

also be explicitly brought up to date on demand at any point in the execution
of the program.

2.3 External Datábase Implementation

We present another implementation of persistent predicates which keeps the
storage in a relational datábase. This is clearly useful, for example, when the
data already resides in such a datábase, the amount of data is very large, etc. A
more extensive description of this interface can be found in [8, 9].

One of the most attractive features of our approach is that this view of exter­
nal relations as just another storage médium for persistent predicates provides
a very natural and transparent way to perform simple accesses to relational
databases from (C)LP programs. This implementation allows reflecting selected
columns of a relational table as a persistent predicate. The implementation also
provides facilities for reflecting complex views of the datábase relations as in­
dividual persistent predicates. Such views can be constructed as conjunctions,
disjunctions or projections of datábase relations.

The architecture of the datábase interface (Figure 3), has been designed with
two goals in mind: simplifying the communication between the Prolog side and
the relational datábase server, and providing platform independence, allowing
inter-operation when using different databases.

Application program

Source view
(persistent predicates)

Persistent predicates
library

DB Client

(midlevel lib)

Sockets
library

4
i

pl2sql

(compiler)

Native external
interface

External datábase serv

Socket or native interface
i

n
L _ _

i I

Fig. 3. Architecture of the access to an external datábase

The interface is built on the Prolog side by stacking several abstraction levéis
over the socket and native code interfaces (Figure 3). Typically, datábase servers
allow connections using TCP/IP sockets and a particular protocol, while in other
cases, linking directly a shared object or a DLL may be needed. For the cases
where remote connections are not provided (e.g., certain versions of ODBC), a
special-purpose mediator which acts as a bridge between a socket and a native
interface has been developed [8,9]. Thus, the low level layer is highly speciñc
for each datábase implementation (e.g. MySQL, Postgres, ORACLE, etc.). The
mid-level interface (which is similar in level of abstraction to that present in
most current Prolog systems) abstracts away these details.

The higher-level layer implements the concept of persistent predicates so that
calis and datábase updates to persistent predicates actually act upon relations

stored in the datábase by means of automatically generated mid-level code. In
the base implementation, at compile-time, a "stub" deñnition is included in
the program containing one clause whose head has the same predicate ñame
and arity as the persistent predicates and whose body contains the appropriate
mid-level code, which basically implies activating a connection to the datábase
(logging on) if the connection is not active, compiling on the fly and sending the
appropriate SQL code, retrieving the solutions (or the ñrst solution and the DB
handle for asking for more solutions, and then retrieving additional solutions on
backtracking or eventually failing), and closing the connection (logging off the
datábase), therefore freeing the programmer from having to pay attention to
low-level details.

The SQL code in particular is generated using a Prolog to SQL translator
based on the excellent work of Draxler [10]. Modiñcations were made to the code
of [10] so that the compiler can deal with the different idioms used by different
databases, the different types supported, etc. as well as blending with the high-
level way of declaring persistence, types, modes, etc. that we have proposed (and
which is in line with the program assertions used throughout in the Ciao system).
Conversions of data types are automatically handled by the interface, using the
type declarations provided by the user or inferred by the global analyzers.

In principie the SQL code corresponding to a given persistent predicate, lit­
eral, or group of literals needs to be generated dynamically at run-time for every
cali to a persistent predicate since the mode of use of the predicate affects the
code to be generated and can change with each run-time cali. Clearly, a number
of optimizations are possible. In general, a way to improve performance is by re-
ducing overhead in the run-time part of the Prolog interface by avoiding any task
that can be accomplished at compile-time, or which can be done more efñciently
by the SQL server itself. We study two different optimization techniques based
on these ideas: the use of static analysis information to pre-compute the SQL
expressions at compile time (which is related to adornment-based query opti­
mization in deductive databases [11]), and the automatic generation of complex
SQL queries based on Prolog query clustering.

Using static analysis information to pre-compute SQL expressions.
As pointed out, the computation of SQL queries can be certainly sped up by
creating skeletons of SQL sentences at compile-time, and fully instantiating them
at run-time. In order to créate the corresponding SQL sentence for a given cali to
a persistent predicate at compile-time, information regarding the instantiation
status of the variables that appear in the goal is needed. This mode information
can be provided by the user by means of the Ciao assertion language. More
interestingly, this information can typically be obtained automatically by using
program analysis, which in the Ciao system is accomplished by CiaoPP, a
powerful program development tool which includes a static analyzer, based on
Abstract Interpretation [6,7]. If the program is fed to CiaoPP, selecting the
appropriate options, the output will contain, at every program point, the abstract
substitution resulting from the analysis using a given domain. The essential
information here is argument groundness (i.e., modes, which are computed using
the sharing+freeness domain): we need to know which datábase columns must
appear in the WHERE part of the SQL expression.

For example, assume that we have an database-based persistent predícate as
in Section 2:
: - pred employee/3 :: s t r i n g * s t r i n g * in t +

pers is tent (employee(ident , category, t ime) , p a y r o l l) .
and consider also the program shown in the left side of Figure 2. The literal
employee/3 will be translated by the persistence library to a mid-level cali which
will at run-time cali the p l2sql compiler to compute an SQL expression cor-
responding to employee (Empl, Categ, Days) based on the groundness state of
Empl, Categ and Days. These expressions can be precomputed for a number of
combinations of the groundness state of the arguments, with still some run-time
overhead to select among these combinations. For example, if the static analyzer
can infer that Empl is ground when calling employee (Empl, Categ, Days), we
will be able to build at compile-time the SQL query for this goal as:
SELECT i d e n t , c a t e g o r y , t i m e FROM employee WHERE i d e n t = ' SEmplS ' ;

The only task that remains to be performed at run-time, before actually
querying the datábase, is to replace $Empl$ with the actual valué that Empl is
instantiated to and send the expression to the datábase server.

A side effect of (SQL-)persistent predicates is that they provide useful in-
formation which can improve the analysis results for the rest of the program:
the assertion that declares a predicate (SQL-)persistent also implies that on suc-
cess all the arguments will be ground. This additional groundness information
can be propagated to the rest of the program. For instance, in the deñnition of
sa la ry /2 in Figure 2, category/2 happens to be a persistent predicate living in
an SQL datábase. Henee, we will surely be provided with groundness informa­
tion for category/2 so that the corresponding SQL expression will be generated
at compile-time as well.

Query clustering. The second possible optimization on datábase queries is
query clustering. A simple implementation approach would deal separately with
each literal calling a persistent predicate, generating an individual SQL query for
every such literal. Under some circumstanees, mainly in the presence of intensive
backtracking, the flow of tupies through the datábase connection generated by
the Prolog backtracking mechanism will produce limited performance.

In the case of complex goals formed by consecutive calis to persistent predi-
cates, it is possible to take advantage of the fact that datábase systems include
a great number of well-developed techniques to improve the evaluation of com­
plex SQL queries. The Prolog to SQL compiler is in fact able to transíate such
complex conjunctions of goals into efficient SQL code. The compile-time opti­
mization that we propose requires identifying literals in clause bodies which cali
SQL-persistent predicates and are contiguous (or can be safely reordered to be
contiguous) so that they can be clustered and, using mode information, the SQL
expression corresponding to the entire complex goal compiled as a single unit.
This is a very simple but powerful optimization, as will be shown.

For example, in predicate sa la ry /2 of Figure 2, assuming that we have
analysis information which ensures that sa la ry /2 is always called with a ground
term in its ñrst argument, a single SQL query will be generated at compile-time
for both calis to persistent predicates, such as:

SELECT i d e n t , c a t e g o r y , t i m e , r e l 2 . m o n e y
FROM employee , c a t e g o r y r e l 2
WHERE i d e n t = 'SEmplS' AND r e l 2 . c a t e g o r y = c a t e g o r y ;

2.4 Concurrency and transactional behaviour

There are two main issues to address in these implementations of persistence re-
lated to transactional processing and concurrency. The ñrst one is consistency:
when there are several processes changing the same persistent predicate con-
currently, the ñnal state must be consistent w.r.t. the changes made by every
process. The other issue is visibility: every process using a persistent predicate
must be aware of the changes made by other processes which use that predicate.
A further, related issue is what means exist in the source language to express that
a certain persistent predicate may be accessed by several threads or processes,
and how several accesses and modiñcations to a set of persistent predicates are
grouped so that they are implemented as a single transaction.

Regarding the source language issue, the Ciao language already includes a
way to mark dynamic data predicates as concurrent [2], stating that such predi-
cates could be modiñed by several threads or processes. Also, a means has been
recently developed for marking that a group of accesses and modiñcations to
a set of dynamic predicates constitute a single atomic transaction [12]. Space
limitations do not allow describing locking and transactional behaviour in the
implementation of persistent predicates proposed. The current solutions are out-
lined in [13,12] and these issues are the subject of future work.

3 Empirical results

We now study from a performance point of view the alternative implementations
of persistence presented in previous sections. To this end, both implementations
(ñle-based and SQL-based) of persistent predicates, as well as the compile-time
optimizations previously described, have been integrated and tested in the Ciao
Prolog development system [14].

3.1 Performance without Compile-time Optimizations

The objective in this case is to check the relative performance of the various per­
sistence mechanisms and contrast them with the internal Prolog rule datábase.
The queries issued involve searching on the datábase (using both indexed and
non-indexed queries) as well as updating it.

The results of a number of different tests using these benchmarks can be
found in Table 1, where a four-column, 25,000 record datábase table is used
to check the basic capabilities and to measure access speed. Each one of the
four columns has a different measurement-related purpose: two of them check
indexed accesses —using int and string basic data types—, and the other
two check non-indexed accesses. The time spent by queries for the different
combinations are given in the rows non-indexed, numeric query, non-indexed,
string query, indexed, numeric query, and indexed, string query (time spent in
1,000 consecutive queries randomly selected). Row assertz gives the time for
creating the 25,000 record table by adding the tupies one by one. Rows non-
indexed, numeric retract, non-indexed string retract, indexed numeric retract, and
indexed string retract provide the timings for the deletion of 1,000 randomly
selected records by deleting the tupies one by one.

The timings were taken on a medium-loaded Pentium IV Xeon 2.0Ghz with
two processors, 1Gb of RAM memory, running Red Hat Linux 8.0, and averaging
several runs and eliminating the best and worst valúes. Ciao versión 1.9.78 and
MySQL versión 3.23.54 were used.

The meaning of the columns is as follows:

prologdb (data) Is the t ime spent when accessing directly the internal (as-
ser t / re t ract) s tate of Prolog.

prologdb (concurrent) In this case tables are marked as concurrent. This tog-
gles the variant of the assert / retract datábase which allows concurrent access
to the Prolog rule datábase. Atomicity in the updates is ensured and sev­
eral threads can access concurrently the same table and synchronize through
facts in the tables (see [2]). This measurement has been made in order to
provide a fairer comparison with a datábase implementation, which has the
added overhead of having to take into account concurrent searches/updates,
user permissions, etc.7

persdb This is the implementation presented in Section 2.2, i.e., the ñle-based
persistent versión. The code is the same as above, but marking the predicates
as persistent. Thus, in addition to keeping incore images of the rule datábase,
changes are automatically flushed out to an external, ñle-based transaction
record. This record provides persistence, but also introduces the additional
cost of having to save updates . The implementation ensures atomicity and
also basic transactional behavior.

p e r s d b / s q l This is the implementation presented in Section 2.3, i.e., where all
the persistent predicates-related operations are made directly on an external
SQL datábase. The code is the same as above, but marking the predicates as
SQL-persistent. No information is kept incore, so tha t every datábase access
imposes an overhead on the execution.8

sql Finally, this is a native implementation in SQL of the benchmark code,
i.e., what a programmer would have writ ten directly in SQL, with no host
language overhead. To perform these tests the datábase client included in
MySQL has been used. The SQL sentences have been obtained from the
Ciao Prolog interface and executed using the MySQL client in batch mode.

Several conclusions can be drawn from Table 1:

Sens i t iv i ty t o t h e a m o u n t of d a t a to be transferred Some tests made to
show the effect of the size of the da ta transferred on the access speed (which

7 Note, however, that this is still quite different from a datábase, apart, obviously, from
the lack of persistence. On one hand databases typically do not support structured
data, and it is not possible for threads to synchronize on access to the datábase,
as is done with concurrent dynamic predicates. On the other hand, in concurrent
dynamic predicates different processes cannot access the same data structures, which
is possible in SQL databases. However, SQL databases usually use a server process
to handle requests from several clients, and thus there are no low-level concurrent
accesses to actual datábase files from different processes, but rather from several
threads of a single server process.

8 Clearly, it would be interesting to perform caching of read data, but note that this
is not trivial since an invalidation protocol must be implemented, given there can be
concurrent updates to the datábase. This is left as future work.

assertz (25000 records)
non-indexed numeric query
non-indexed string query
indexed numeric query
indexed string query
non-indexed numeric retract
non-indexed string retract
indexed numeric retract
indexed string retract

prologdb
(data)
590.5

7,807.6
8,045.5

1.1
1.1

7,948.3
7,648.0

2.0
2.0

prologdb
(concurrent)

605.5
13,584.8
12,613.3

3.0
3.0

13,254.5
13,097.6

3.3
3.1

persdb

5,326.4
7,883.5
9,457.9

1.1
1.5

8,565.0
11,265.0

978.8
1,738.1

persdb/sql

16,718.3
17,721.0
24,188.0

1,082.4
1,107.9

19,128.5
24,764.5

2,157.4
2,191.9

sql

3,935.0
17,832.5
23,052.5

181.3
198.8

18,470.0
23,808.8

466.3
472.5

Table 1. Speed in milliseconds of accessing and updating

can be consulted in [13]) indicate that the methods which access to exter-
nal processes (persdb/sql and sql) are specially sensitive to the data size,
more than the ñle-based persistent datábase, whilst the internal Prolog rule
datábase is affected to some extent only.

Incidence of indexing The impact of indexing is readily noticeable in the ta-
bles, especially for the internal Prolog rule datábase but also for the ñle-based
persistent datábase. The MySQL-based tests do present also an important
speedup, but not as relevant as that in the Prolog-only tests. This behavior is
probably caused by the overhead imposed by the SQL datábase requirements
(communication with MySQL daemon, concurrency and transaction avail-
ability, much more complex Índex management, integrity constraint han-
dling, etc). In addition to this, Prolog systems are usually highly optimized
to take advantage of certain types of indexing, while datábase systems of-
fer a wider class of indexing possibilities which might not be as efficient as
possible in some determinate cases, due to their generality.

Impact of concurrency support Comparing the Prolog tests, it is worth
noting that concurrent predicates bring in a non-insigniñcant load in rule
datábase management (up to 50% slower than simple data predicates in some
cases), in exchange for the locking and synchronization features they provide.
In fact, this slow-down makes the concurrent Prolog internal rule datábase
show a somewhat lower performance than using the ñle-based persistent
datábase, which has its own ñle locking mechanism to provide inter-process
concurrent accesses (but not from different threads of the same process: in
that case both concurrency and persistence of predicates needs to be used).

Incidence of the Prolog interface in SQL characteristics Comparing di-
rect SQL queries (i.e., typed directly at the datábase top-level interface)
with using persistent predicates, we can see that only in the case of non-
indexed queries times are similar, whereas indexed queries and datábase
modiñcations show a signiñcant difference. This is due to the fact that in
the experiments the setting was used in which a different connection to the
datábase server was open for every query requested, and closed when the
query had ñnished (useful in practice to limit the number of open connec-
tions to the datábase, on which there is a limitation). We plan to perform
additional tests turning on the more advanced setting in which the datábase
connection is kept open.

3.2 Performance with Compile-time Optimizations
We have also implemented the two optimizations described in Section 2.3 (using
static analysis information and query clustering) and measured the improve-
ments brought about by these optimizations. The tests have been performed on
two SQL-persistent predicates (p/2 and q/2) with 1,000 facts each and indexed
on the ñrst column. There are no duplicate tupies ñor duplicate valúes in any
column (simply to avoid overloading due to unexpected backtracking). Both p/2
and q/2 contain exactly the same tupies.

Table 2 presents the time (in milliseconds) spent performing 1,000 repeated
queries in a failure-driven loop. In order to get more stable measures average
times were calculated for 10 consecutive tests, removing the highest and lowest
valúes. The system used to run the tests was the same as in section 3.1.

The single queries part of the table corresponds to a simple cali to p(X,Z).
The ñrst row represents the time spent in recovering on backtracking all the
1,000 solutions to this goal. The second and third rows present the time taken
when performing 1,000 queries top(X,Z) (with no backtracking, i.e., taking only
the ñrst solution), with, respectively, the indexing and non-indexing argument
being instantiated. The two columns correspond to the non-optimized case in
which the translation to SQL is performed on the fly, and to the optimized case in
which the SQL expressions are pre-computed at compile-time, using information
from static analysis.

The 'complex queries:p(X,Z) ,q(Z,Y)' part of the table corresponds to calling
this conjunction with the rows having the same meaning as before. Information
about variable groundness (on the ñrst argument of the ñrst predicate in the
second row and on the second argument of the ñrst predicate in the third row)
obtained from global analysis is used in both of these rows. The two columns
allow comparing the cases where the queries for p(X,Z) and q(Z,Y) are pro-
cessed separately (and the join is performed in Prolog via backtracking) and the
case where the compiler performs the clustering optimization and pre-compiles
p(X,Z) ,q(Z,Y) into a single SQL query.

Finally, the 'complex queries:p(X,Z) , r (Z,Y) ' part of the table illustrates the
special case in which the second goal calis a predicate which only has a few tupies
(but matching the variable bindings of the ñrst goal). More concretely, r / 2 is
a persistent predicate with 100 tupies (10% of the 1,000 tupies of p/2). All the
tupies in r / 2 have in the ñrst column a valué which appears in the second column
of p/2. Thus, in the non-optimized test, the Prolog execution mechanism will
backtrack over the 90% of the solutions produced by p/2 that will not succeed.

The results in Table 2 for single queries show that the improvement due to
compile-time SQL expression generation is between 10 and 20 percent. These
times include the complete process of a) translating (dynamically or statically)
the literals into SQL and preparing the query (with our without optimizations),
and b) sending the resulting SQL expression to the datábase and processing the
query in the datábase. Since the optimization only affects the time involved in
a), we measured also the effect of the optimizations when considering only a),
i.e., only the time spent in Prolog. The results are shown in Table 3. In this case
the run-time speed-up obtained when comparing dynamic generation of SQL at
run time and static generation at compile time (i.e., being able to pre-compute
the SQL expressions thanks to static analysis information) is quite signiñcant.

Single queries: p(X,Y)

Traverse solutions
Indexed ground query
Non-indexed ground query

on-the-fly
SQL generation

36.6
1,010.0
2,376.1

pre-computed
SQL expressions

28.5
834.9

2,118.1

Complex queries: p(X,Z) ,q(Z,Y)

Traverse solutions
Indexed ground query
Non-indexed ground query

non-clustered
1,039.6
2,111.4
3,550.1

clustered
51.6

885.8
2,273.8

Complex queries: p(X,Z) ,r(Z,Y)

Asymmetric query
non-clustered

1146.1
clustered

25.1
Table 2. Comparison of optimization techniques

Single queries: p(X,Y)

Indexed ground query
Non-indexed ground query

on-the-fly
SQL generation

197.5
195.4

pre-computed
SQL expressions

27.6
27.3

Complex queries: p(X,Z) ,q(Z,Y)

Indexed ground query
Non-indexed ground query

non-clustered
on-the-fly

406.8
395.0

pre-computed
clustered queries

33.3
42.6

Table 3. Comparison of optimization techniques (Prolog time only)

The difference is even greater if complex queries are clustered and translated as
a single SQL expression: the time spent in generating the ñnal SQL expression
when clustering is pre-computed is only a bit greater than in the atomic goal case,
while the non-clustered, on-the-fly SQL generation of two atomic goals needs
twice the time of computing a single atomic goal. In summary, the optimization
results in an important speedup on the Prolog side, but the overall weight of b)
in the selected implementation (due to opening and closing DB connections) is
more signiñcant. We believe this overhead can be reduced considerably and this
is the subject of ongoing work.

Returning to the results in Table 2, but looking now at the complex goals case,
we observe that the speed-up obtained due to the clustering optimization is much
more signiñcant. Traversing solutions using non-optimized datábase queries has
the drawback that the second goal is traversed twice for each solution of the
ñrst goal: ñrst to provide a solution (as is explained above, p/2 and q/2 have
exactly the same facts, and no failure happens in the second goal when the ñrst
goal provides a solution), and secondly to fail on backtracking. Both cali and
redo imply accessing the datábase. In contrast, if the clustering optimization is
applied, this part of the job is performed inside the datábase, so there is only
one datábase access for each solution (plus the last access when there are no
more solutions). In the second and third rows, the combined effect of compile-
time SQL expression generation and clustering optimization causes a speed-up of

around 50% to 135%, depending on the cost of retrieving da ta from the datábase
tables: as the cost of da ta retrieval increases (e.g., access based on a non-indexed
column), the speed-up in grouping queries decreases.

Finally, the asymmetric complex query (in which the second goal succeeds
for only a fraction of the solutions provided by the ñrst goal) the elimination of
useless backtracking yields the most important speed-up, as expected.

References

1. Kowalski, R.A.: Logic Programming with Integrity Constraints. In: Proceedings
of JELIA. (1996) 301-302

2. Carro, M., Hermenegildo, M.: Concurrency in Prolog Using Threads and a Shared
Datábase. In: 1999 International Conference on Logic Programming, MIT Press,
Cambridge, MA, USA (1999) 320-334

3. Pineda, A., Bueno, F.: The O'Ciao Approach to Object Oriented Logic Program­
ming. In: Colloquium on Implementation of Constraint and LOgic Programming
Systems (ICLP associated workshop), Copenhagen (2002)

4. Lindholm, T.G., O'Keefe, R.A.: Efñcient Implementation of a Defensible Semantics
for Dynamic Prolog Code. In Lassez, J.L., ed.: Logic Programming: Proceedings
of the Fourth Int'l. Conference and Symposium, The MIT Press (1987) 21-39

5. Ullman, J.D.: Datábase and Knowledge-Base Systems, Vol. 1 and 2. Computer
Science Press, Maryland (1990)

6. Hermenegildo, M., Puebla, C , Bueno, F., López-García, P.: Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In:
lOth International Static Analysis Symposium (SAS'03). Number 2694 in LNCS,
Springer-Verlag (2003) 127-152

7. Hermenegildo, M., Bueno, F., Puebla, C , López-García, P.: Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In: 1999 Int'l.
Conference on Logic Programming, Cambridge, MA, MIT Press (1999) 52-66

8. Caballero, L, Cabeza, D., Genaim, S., Gómez, J., Hermenegildo, M.: persdb'sql:
SQL Persistent Datábase Interface. Technical Report CLIP10/98.0 (1998)

9. Cabeza, D., Hermenegildo, M., Genaim, S., Taboch, C : Design of a Generic,
Homogeneous Interface to Relational Databases. Technical Report D3.1.M1-A1,
CLIP7/98.0 (1998)

10. Draxler, C : Accessing Relational and Higher Databases through Datábase Set
Predicates in Logic Programming Languages. PhD thesis, Zurich University, De­
partment of Computer Science (1991)

11. Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive datábase
systems. Journal of Logic Programming 23 (1993) 125-149

12. Pattengale, N.D.: Transactional semantics. Technical Report CLIP3/04.0, Tech­
nical University of Madrid (UPM), Facultad de Informática, 28660 Boadilla del
Monte, Madrid, Spain (2004)

13. Correas, J., Gómez, J.M., Carro, M., Cabeza, D., Hermenegildo, M.: A Generic
Persistence Model for (C)LP Systems (and two useful implementations). Technical
Report CLIP3/2003.1(2004), Technical University of Madrid, School of Computer
Science, UPM (2004) h t t p : / / c l i p . d i a . f i . u p m . e s / p a p e r s / p e r s d b - t r l . p d f .

14. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-García, P., Puebla, G.:
The Ciao Prolog System. Reference Manual (vi.8). The Ciao System Documenta-
tion Series-TR CLIP4/2002.1, School of Computer Science, Technical University
of Madrid (UPM) (2002) System and on-line versión of the manual available at
h t t p : / / c l i p .d i a . f i . upm.es /So f tware /C iao / .

http://clip.dia.fi.upm.es/papers/persdb-trl.pdf
http://clip.dia.fi.upm.es/Software/Ciao/

