698 research outputs found

    Unexpected Ionization Structure in Eta Carinae's "Weigelt Knots"

    Get PDF
    The Weigelt knots, dense slow-moving ejecta near η Carinae, are mysterious in structure as well as in origin. Using spatially dithered spectrograms obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS), we have partially resolved the ionization zones of one knot. Contrary to simple models, higher ionization levels occur on the outer side, i.e., farther from the star. They cannot represent a bow shock, and no satisfying explanation is yet available—though we sketch one qualitative possibility. STIS spectrograms provide far more reliable spatial measurements of the Weigelt knots than HST images do, and this technique can also be applied to the knots' proper motion problem. Our spatial measurement accuracy is about 10 mas, corresponding to a projected linear scale of the order of 30 AU, which is appreciably smaller than the size of each Weigelt knot

    The design and development of a community based multisensory room

    Get PDF
    This case study describes the design and development of a multisensory environment for use by a local community, in response to local needs. Multisensory environments allow users to control the sensory inputs they experience from the environment. This autonomy may be especially impactful for those living with autism or dementia. The evidence base supporting the design, development and implementation of multisensory environments has been limited to date. This case study explores the evolution of the interdisciplinary team from a request for collaboration to the creation of a functioning multisensory room. It describes the experiences of the group of researchers finding shared understandings and evolving to a transdisciplinary approach

    FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos

    Get PDF
    The microRNAs (miRNAs) are recently discovered short, noncoding RNAs, that regulate gene expression in metazoans. We have cloned short RNAs from chicken embryos and identified five new chicken miRNA genes. Genome analysis identified 17 new chicken miRNA genes based on sequence homology to previously characterized mouse miRNAs. Developmental Northern blots of chick embryos showed increased accumulation of most miRNAs analyzed from 1.5 days to 5 days except, the stem cell-specific mir-302, which was expressed at high levels at early stages and then declined. In situ analysis of mature miRNAs revealed the restricted expression of mir-124 in the central nervous system and of mir-206 in developing somites, in particular the developing myotome. In addition, we investigated how miR-206 expression is controlled during somite development using bead implants. These experiments demonstrate that fibroblast growth factor (FGF) -mediated signaling negatively regulates the initiation of mir-206 gene expression. This may be mediated through the effects of FGF on somite differentiation. These data provide the first demonstration that developmental signaling pathways affect miRNA expression. Thus far, miRNAs have not been studied extensively in chicken embryos, and our results show that this system can complement other model organisms to investigate the regulation of many other miRNAs

    Multiparametric MRI for assessment of early response to neoadjuvant sunitinib in renal cell carcinoma.

    Get PDF
    Funder: NIHR Cambridge Biomedical Research CentreFunder: Addenbrooke’s Charitable TrustFunder: National Institute for Health Research (NIHR)Funder: Mark Foundation For Cancer ResearchFunder: Cambridge Commonwealth, European and International TrustFunder: Cancer Research UKFunder: Cambridge Clinical Trials UnitFunder: Cancer Research UK Cambridge CentreFunder: Engineering and Physical Sciences Research Council Cancer Imaging Centre in Cambridge and ManchesterFunder: Cambridge Experimental Cancer Medicine CentrePURPOSE: To detect early response to sunitinib treatment in metastatic clear cell renal cancer (mRCC) using multiparametric MRI. METHOD: Participants with mRCC undergoing pre-surgical sunitinib therapy in the prospective NeoSun clinical trial (EudraCtNo: 2005-004502-82) were imaged before starting treatment, and after 12 days of sunitinib therapy using morphological MRI sequences, advanced diffusion-weighted imaging, measurements of R2* (related to hypoxia) and dynamic contrast-enhanced imaging. Following nephrectomy, participants continued treatment and were followed-up with contrast-enhanced CT. Changes in imaging parameters before and after sunitinib were assessed with the non-parametric Wilcoxon signed-rank test and the log-rank test was used to assess effects on survival. RESULTS: 12 participants fulfilled the inclusion criteria. After 12 days, the solid and necrotic tumor volumes decreased by 28% and 17%, respectively (p = 0.04). However, tumor-volume reduction did not correlate with progression-free or overall survival (PFS/OS). Sunitinib therapy resulted in a reduction in median solid tumor diffusivity D from 1298x10-6 to 1200x10-6mm2/s (p = 0.03); a larger decrease was associated with a better RECIST response (p = 0.02) and longer PFS (p = 0.03) on the log-rank test. An increase in R2* from 19 to 28s-1 (p = 0.001) was observed, paralleled by a decrease in Ktrans from 0.415 to 0.305min-1 (p = 0.01) and a decrease in perfusion fraction from 0.34 to 0.19 (p<0.001). CONCLUSIONS: Physiological imaging confirmed efficacy of the anti-angiogenic agent 12 days after initiating therapy and demonstrated response to treatment. The change in diffusivity shortly after starting pre-surgical sunitinib correlated to PFS in mRCC undergoing nephrectomy, however, no parameter predicted OS. TRIAL REGISTRATION: EudraCtNo: 2005-004502-82

    A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk

    Get PDF
    DNA methylation (DNAm) has been found to show robust and widespread age-related changes across the genome. DNAm profiles from whole blood can be used to predict human aging rates with great accuracy. We sought to test whether DNAm-based predictions of age are related to phenotypes associated with type 2 diabetes (T2D), with the goal of identifying risk factors potentially mediated by DNAm. Our participants were 43 women enrolled in the Women's Health Initiative. We obtained methylation data via the Illumina 450K Methylation array on whole blood samples from participants at three timepoints, covering on average 16 years per participant. We employed the method and software of Horvath, which uses DNAm at 353 CpGs to form a DNAm-based estimate of chronological age. We then calculated the epigenetic age acceleration, or Δage, at each timepoint. We fit linear mixed models to characterize how Δage contributed to a longitudinal model of aging and diabetes-related phenotypes and risk factors. For most participants, Δage remained constant, indicating that age acceleration is generally stable over time. We found that Δage associated with body mass index (p = 0.0012), waist circumference (p = 0.033), and fasting glucose (p = 0.0073), with the relationship with BMI maintaining significance after correction for multiple testing. Replication in a larger cohort of 157 WHI participants spanning 3 years was unsuccessful, possibly due to the shorter time frame covered. Our results suggest that DNAm has the potential to act as a mediator between aging and diabetes-related phenotypes, or alternatively, may serve as a biomarker of these phenotypes

    Evaluating the Association Between Keratoconus and the Corneal Thickness Genes in an Independent Australian Population

    Get PDF
    PURPOSE. A recent genome-wide association study (GWAS) identified six loci associated with central corneal thickness that also conferred associated risk of keratoconus (KC). We aimed to assess whether genetic associations existed for these loci with KC or corneal curvature in an independent cohort of European ancestry. METHODS. In total, 157 patients with KC were recruited from public and private clinics in Melbourne, Australia, and 673 individuals without KC were identified through the Genes in Myopia study from Australia. The following six single-nucleotide polymorphisms (SNPs) that showed a statistically significant association with KC in a recent GWAS study were selected for genotyping in our cohort: rs4894535 (FNDC3B), rs1324183 (MPDZ-NF1B), rs1536482 (RXRA-COL5A1), rs7044529 (COL5A), rs2721051 (FOXO1), and rs9938149 (BANP-ZNF469). The SNPs were assessed for their association with KC or corneal curvature using logistic or linear regression methods, with age and sex included as covariates. Bonferroni corrections were applied to account for multiple testing. RESULTS. Genotyping data were available for five of the SNPs. Statistically significant associations with KC were found for the SNPs rs1324183 (P ¼ 0.001; odds ratio [OR], 1.68) and rs9938149 (P ¼ 0.010; OR, 1.47). Meta-analysis of previous studies yielded genomewide significant evidence of an association for rs1324183, firmly establishing it as a KC risk variant. None of the SNPs were significantly associated with corneal curvature. CONCLUSIONS. The SNPs rs1324183 in the MPDZ-NF1B gene and rs9938149 (between BANP and ZNF4659) were associated with KC in this independent cohort, but their association was via a non-corneal curvature route

    Huntingtin-mediated axonal transport requires arginine methylation by PRMT6

    Get PDF
    The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues—very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.Telethon-Italy and Autonomous Province of Trento (TCP12013 to M.P.); Association Française contre les Myopathies (AFM-22221 to M.P. and M.B.); PRIN-MUR (2017F2A2C5 to M.P.); National Institutes of Health (1R21NS111768-01 to M.P. and U.B.P.); PROGRAM RARE DISEASES CNCCS-Scarl-Pomezia (M.P.); FONDAZIONE AIRC-Italy (24423 to M.P.); Alzheimer Trento Onlus with the legato Baldrachi (M.B.); the Agence Nationale de la Recherche (ANR-15-JPWG-0003-05 JPND CIRCPROT and ANR-18-CE16-0009-01 AXYON to F.S.) and the Spanish Ministry of Science, Innovation and Universities (RTI2018-096322-B-I00 MCIU/AEI/FEDER-UE to J.J.L.

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis
    • …
    corecore