383 research outputs found
Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits
We study the topology and geometry of two dimensional coarsening foams with
arbitrary liquid fraction. To interpolate between the dry limit described by
von Neumann's law, and the wet limit described by Marqusee equation, the
relevant bubble characteristics are the Plateau border radius and a new
variable, the effective number of sides. We propose an equation for the
individual bubble growth rate as the weighted sum of the growth through
bubble-bubble interfaces and through bubble-Plateau borders interfaces. The
resulting prediction is successfully tested, without adjustable parameter,
using extensive bidimensional Potts model simulations. Simulations also show
that a selfsimilar growth regime is observed at any liquid fraction and
determine how the average size growth exponent, side number distribution and
relative size distribution interpolate between the extreme limits. Applications
include concentrated emulsions, grains in polycrystals and other domains with
coarsening driven by curvature
Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina
Hayashi and Carthew (Nature 431 [2004], 647) have shown that the packing of
cone cells in the Drosophila retina resembles soap bubble packing, and that
changing E- and N-cadherin expression can change this packing, as well as cell
shape.
The analogy with bubbles suggests that cell packing is driven by surface
minimization. We find that this assumption is insufficient to model the
experimentally observed shapes and packing of the cells based on their cadherin
expression. We then consider a model in which adhesion leads to a surface
increase, balanced by cell cortex contraction. Using the experimentally
observed distributions of E- and N-cadherin, we simulate the packing and cell
shapes in the wildtype eye. Furthermore, by changing only the corresponding
parameters, this model can describe the mutants with different numbers of
cells, or changes in cadherin expression.Comment: revised manuscript; 8 pages, 6 figures; supplementary information not
include
Inverse lift: a signature of the elasticity of complex fluids?
To understand the mechanics of a complex fluid such as a foam we propose a
model experiment (a bidimensional flow around an obstacle) for which an
external sollicitation is applied, and a local response is measured,
simultaneously. We observe that an asymmetric obstacle (cambered airfoil
profile) experiences a downards lift, opposite to the lift usually known (in a
different context) in aerodynamics. Correlations of velocity, deformations and
pressure fields yield a clear explanation of this inverse lift, involving the
elasticity of the foam. We argue that such an inverse lift is likely common to
complex fluids with elasticity.Comment: 4 pages, 4 figures, revised version, submitted to PR
Dynamical derivation of Bode's law
In a planetary or satellite system, idealized as n small bodies in initially
coplanar, concentric orbits around a large central body, obeying Newtonian
point-particle mechanics, resonant perturbations will cause dynamical evolution
of the orbital radii except under highly specific mutual relationships, here
derived analytically apparently for the first time. In particular, the most
stable situation is achieved (in this idealized model) only when each planetary
orbit is roughly twice as far from the Sun as the preceding one, as observed
empirically already by Titius (1766) and Bode (1778) and used in both the
discoveries of Uranus (1781) and the Asteroid Belt (1801). ETC.Comment: 27 page
Isolation and primary cultures of human intrahepatic bile ductular epithelium
A technique for the isolation of human intrahepatic bile ductular epithelium, and the establishment of primary cultures using a serum- and growth-factor-supplemented medium combined with a connective tissue substrata is described. Initial cell isolates and monolayer cultures display phenotypic characteristics of biliary epithelial cells (low molecular weight prekeratin positive; albumin, alphafetoprotein, and Factor VIII-related antigen negative). Ultrastructural features of the cultured cells show cell polarization with surface microvilli, numerous interepithelial junctional complexes and cytoplasmic intermediate prekeratin filaments. © 1988 Tissue Culture Association, Inc
Patient-clinician collaboration in making care fit:A qualitative analysis of clinical consultations in diabetes care
Objective: To confirm described dimensions of making care fit and explore how patients and clinicians collaborate to make care fit in clinical practice. Methods: As part of an ongoing study, we audiotaped and transcribed patient-clinician consultations in diabetes care. We purposively selected consultations based on participants’ demographical, biomedical and biographical characteristics. We analysed transcripts using reflexive thematic analysis. We combined a deductive and inductive approach, using the pre-described dimensions of making care fit and adding new (sub-)dimensions when pertinent. Results: We analysed 24 clinical consultations. Our data confirmed eight previously described dimensions and provided new sub-dimensions of making care fit with examples from clinical practice (problematic situation, influence of devices, sense of options, shared agenda setting, clinician context, adapting to changing organization of care, and possibility to reconsider). Conclusion: Our study confirmed, specified and enriched the conceptualization of making care fit through practice examples. We observed patient-clinician collaboration in exploration of patients’ context, and by responsively changing, adapting or maintaining care plans. Practice implications: Our findings support clinicians and researchers with insights in important aspects of patient-clinician collaboration. Ultimately, this would lead to optimal design of care plans that fit well in each patient life.</p
Patient-clinician collaboration in making care fit:A qualitative analysis of clinical consultations in diabetes care
Objective: To confirm described dimensions of making care fit and explore how patients and clinicians collaborate to make care fit in clinical practice. Methods: As part of an ongoing study, we audiotaped and transcribed patient-clinician consultations in diabetes care. We purposively selected consultations based on participants’ demographical, biomedical and biographical characteristics. We analysed transcripts using reflexive thematic analysis. We combined a deductive and inductive approach, using the pre-described dimensions of making care fit and adding new (sub-)dimensions when pertinent. Results: We analysed 24 clinical consultations. Our data confirmed eight previously described dimensions and provided new sub-dimensions of making care fit with examples from clinical practice (problematic situation, influence of devices, sense of options, shared agenda setting, clinician context, adapting to changing organization of care, and possibility to reconsider). Conclusion: Our study confirmed, specified and enriched the conceptualization of making care fit through practice examples. We observed patient-clinician collaboration in exploration of patients’ context, and by responsively changing, adapting or maintaining care plans. Practice implications: Our findings support clinicians and researchers with insights in important aspects of patient-clinician collaboration. Ultimately, this would lead to optimal design of care plans that fit well in each patient life.</p
Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor. [Image: see text
Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known
whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate
is partially converted to mesaconate intracellularly and that
mesaconate accumulation in macrophage activation depends
on prior itaconate synthesis. When added to human cells in
supraphysiological concentrations, all three isomers reduce
lactate levels, whereas itaconate is the strongest succinate
dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino
acid metabolism, modulate cytokine/chemokine release and
reduce interferon signalling, oxidative stress and the release
of viral particles. Of the three isomers, citraconate is the
strongest electrophile and nuclear factor-erythroid 2-related
factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of
itaconate by cis-aconitate decarboxylase (ACOD1), probably
by competitive binding to the substrate-binding site. These
results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate
as the first naturally occurring ACOD1 inhibitor
- …