8,205 research outputs found

    Weak Reprocessed Features in the Broad Line Radio Galaxy 3C382

    Full text link
    We present a detailed X-ray study of the Broad Line Radio Galaxy 3C382, observed with the BeppoSAX satellite in a very bright state. The continuum emission is well modeled with a power law that steepens at high energies, with an e-folding energy of about 120 keV. At soft energies a clear excess of emission is detected, which can not be explained solely by the extended thermal halo seen in a ROSAT HRI image. A second, more intense soft X-ray component, possibly related to an accretion disk, is required by the data. Both a reflection component (R=0.3) and an iron line (EW \sim 50) are detected, at levels much weaker than in Seyfert galaxies, suggesting a common origin. Combining our measurements with results from the literature we find that the iron line has remained approximately constant over 9 years while the continuum varied by a factor of 5. Thus the fluorescent gas does not respond promptly to the variations of the X-ray primary source, suggesting that the reprocessing site is located away, likely at parsec distances. While the continuum shape indicates that X-rays derive from a thermal Comptonization process, the weakness of other spectral features implies that either the upper layers of the optically thick accretion disk are completely ionized or the corona above the disk is outflowing with mildly relativistic velocity.Comment: 11 pages, 4 figures. Accepted for publication in the Astrophysical Journa

    Extended X-ray emission in radio galaxies: the peculiar case of 3C 305

    Full text link
    Extended X-ray structures are common in Active Galactic Nuclei (AGNs). Here we present the first case of a Compact Steep Spectrum (CSS) radio galaxy, 3C 305, in which the X-ray radiation appears to be associated with the optical emission line region, dominated by the [O III]5007. On the basis of a morphological study, performed using the comparison between the X-rays, the optical and the radio band, we argue that the high energy emission has a thermal nature and it is not directly linked to the radio jet and hotspots of this source. Finally, we discuss the origin of the extended X-ray structure connected with the optical emission line region following two different interpretations: as due to the interaction between matter outflows and shock-heated environment gas, or as due to gas photoionized by nuclear emission.Comment: 5 pages, 2 figures, Accepted for publication in The ApJL Comments: references and affilitations correcte

    High Energy Break and Reflection Features in the Seyfert Galaxy MCG+8-11-11

    Get PDF
    We present the results from ASCA and OSSE simultaneous observations of the Seyfert 1.5 galaxy MCG+8-11-11 performed in August-September 1995. The ASCA observations indicate a modest flux increase (20%) in 3 days, possibly correlated to a softening of the 0.6-9 keV spectrum. The spectrum is well described by a hard power law (Gamma=1.64) absorbed by a column density slightly larger than the Galactic value, with an iron line at 6.4 keV of EW=400 eV. The simultaneous OSSE data are characterized by a much softer power law with photon index Gamma=3.0, strongly suggesting the presence of a spectral break in the hard X/soft gamma-ray band. A joint fit to OSSE and ASCA data clearly shows an exponential cut-off at about 300 keV, and strong reflection component. MCG+8-11-11 features a spectral break in the underlying continuum unambiguously. This, together with the inferred low compactness of this source, favours thermal or quasi-thermal electron Comptonization in a structured Corona as the leading process of high energy radiation production.Comment: 13 pages, + 4 figure.ps AAS LateX [11pt,aasms4]{article} To be published in ApJ, Main Journa

    CHANDRA reveals galaxy cluster with the most massive nearby cooling core, RXCJ1504.1-0248

    Full text link
    A CHANDRA follow-up observation of an X-ray luminous galaxy cluster with a compact appearance, RXCJ1504.1-0248 discovered in our REFLEX Cluster Survey, reveals an object with one of the most prominent cluster cooling cores. With a core radius of ~30 kpc smaller than the cooling radius with ~140 kpc more than 70% of the high X-ray luminosity of Lbol = 4.3 10e45 erg s-1 of this cluster is radiated inside the cooling radius. A simple modeling of the X-ray morphology of the cluster leads to a formal mass deposition rate within the classical cooling flow model of 1500 - 1900 Msun yr-1 (for h=0.7), and 2300 - 3000 Msun yr-1 (for h=0.5). The center of the cluster is marked by a giant elliptical galaxy which is also a known radio source. Thus it is very likely that we observe one of the interaction systems where the central cluster AGN is heating the cooling core region in a self-regulated way to prevent a massive cooling of the gas, similar to several such cases studied in detail in more nearby clusters. The interest raised by this system is then due to the high power recycled in RXCJ1504-0248 over cooling time scales which is about one order of magnitude higher than what occurs in the studied, nearby cooling core clusters. The cluster is also found to be very massive, with a global X-ray temperature of about 10.5 keV and a total mass of about 1.7 10e15 Msun inside 3 Mpc.Comment: accepted for publication in Astrophys. Journal, 10 figure

    The MURALES survey II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results

    Get PDF
    We present observations of a complete sub-sample of 20 radio galaxies from the Third Cambridge Catalog (3C) with redshift <0.3 obtained from VLT/MUSE optical integral field spectrograph. These data have been obtained as part of the survey MURALES (a MUse RAdio Loud Emission line Snapshot survey) with the main goal of exploring the Active Galactic Nuclei (AGN) feedback process in a sizeable sample of the most powerful radio sources at low redshift. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to their unprecedented depth (the median 3 sigma surface brightness limit in the emission line maps is 6X10^-18 erg s-1 cm-2 arcsec-2, these observations reveal emission line structures extending to several tens of kiloparsec in most objects. In nine sources the gas velocity shows ordered rotation, but in the other cases it is highly complex. 3C sources show a connection between radio morphology and emission line properties. Whereas, in three of the four Fanaroff and Riley Class I radio galaxies (FRIs), the line emission regions are compact, ~1 kpc in size; in all but one of the Class II radiogalaxies FRIIs, we detected large scale structures of ionized gas with a median extent of 17 kpc. Among the FRIIs, those of high and low excitation show extended gas structures with similar morphological properties, suggesting that they both inhabit regions characterized by a rich gaseous environment on kpc scale.Comment: Accepted for publication in A&

    Long-Term, Continuous Monitoring of the Broad Line Radio Galaxies 3C 390.3 and 3C 120 With the Rossi X-Ray Timing Explorer

    Full text link
    We present a study of the flux and spectral variability of the two broad-line radio galaxies (BLRGs) 3C 390.3 and 3C 120, observed almost daily with RXTE for nearly two months each in 1996 and 1997, respectively. Our original motivation for this study was to search for systematic differences between BLRGs and their radio-quiet counterparts, the Seyfert galaxies, whose temporal and spectral behavior is better studied. We find that both 3C 390.3 and 3C 120 are highly variable, but in a different way, and quantify this difference by means of a structure function analysis. 3C 390.3 is significantly more variable than 3C 120, despite its jet larger inclination angle, implying either that the X-ray variability is not dominated by the jet or that two different variability processes are simultaneously at work in 3C 390.3. We performed an energy-selected and time-resolved analysis based on the fractional variability amplitude and found that the variability amplitude of both objects is strongly anticorrelated with the energy. This last result, along with the correlated change of the photon index with the X-ray continuum flux, can be qualitatively explained within the scenario of thermal Comptonization, generally invoked for radio-quiet active galaxies. Moreover, the time-resolved and energy-selected fractional variability analyses show a trend opposite to that observed in jet-dominated AGN (blazars), suggesting only a minor contribution of the jet to the X-ray properties of BLRGs. Time-averaged spectral analysis indicates the presence of a strong, resolved iron line with centroid at 6.4 keV and a weak reflection component in both objects. The overall PCA+HEXTE spectra are best fitted with the constant density ionization model of Ross & Fabian, but with a modest ionization parameter(abridged).Comment: 37 pages, 13 figures, accepted for publication on Ap

    Gamma-loud quasars: a view with BeppoSAX

    Get PDF
    We present BeppoBeppoSAX observations of the γ\gamma -ray emitting quasars 0836+710, 1510-089 and 2230+114. All the objects have been detected in the PDS up to 100 keV and have extremely flat power-law spectra above 2 keV (αx\alpha _x=0.3--0.5). 0836+710 shows absorption higher than the galactic value and marginal evidence for the presence of the redshifted 6.4 keV Iron line. 1510-089 shows a spectral break around 1 keV, with the low energy spectrum steeper (αl\alpha_l=1.6) than the high energy power-law (αh\alpha_h=0.3). The data are discussed in the light of current Inverse Compton models for the high energy emission.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "X-Ray Astronomy '99", Bologna, Italy, September 199

    Ultraviolet and Multiwavelength Variability of the Blazar 3C 279: Evidence for Thermal Emission

    Full text link
    The gamma-ray blazar 3C 279 was monitored on a nearly daily basis with IUE, ROSAT and EGRET for three weeks between December 1992 and January 1993. During this period, the blazar was at a historical minimum at all wavelengths. Here we present the UV data obtained during the above multiwavelength campaign. A maximum UV variation of ~50% is detected, while during the same period the X-ray flux varied by no more than 13%. At the lowest UV flux level the average spectrum in the 1230-2700 A interval is unusually flat for this object (~1). The flattening could represent the lowest energy tail of the inverse Compton component responsible for the X-ray emission, or could be due to the presence of a thermal component at ~20000 K possibly associated with an accretion disk. The presence of an accretion disk in this blazar object, likely observable only in very low states and otherwise hidden by the beamed, variable synchrotron component, would be consistent with the scenario in which the seed photons for the inverse Compton mechanism producing the gamma-rays are external to the relativistic jet. We further discuss the long term correlation of the UV flux with the X-ray and gamma-ray fluxes obtained at various epochs. All UV archival data are included in the analysis. Both the X- and gamma-ray fluxes are generally well correlated with the UV flux, approximately with square root and quadratic dependences, respectively.Comment: 22 pages, Latex, 7 PostScript figures, to appear in The Astrophysical Journa
    • 

    corecore