1,932 research outputs found

    Assessing the impact of peat erosion on growing season CO2 fluxes by comparing erosional peat pans and surrounding vegetated haggs (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from International Mire Conservation Group and International Peat Society via the DOI in this record.The research data supporting this publication are openly available from the University of Exeter's institutional repository at: https://doi.org/10.24378/exe.1143.Peatlands are recognised as an important but vulnerable ecological resource. Understanding the effects of existing damage, in this case erosion, enables more informed land management decisions to be made. Over the growing seasons of 2013 and 2014 photosynthesis and ecosystem respiration were measured using closed chamber techniques within vegetated haggs and erosional peat pans in Dartmoor National Park, southwest England. Below-ground total and heterotrophic respiration were measured and autotrophic respiration estimated from the vegetated haggs. The mean water table was significantly higher in the peat pans than in the vegetated haggs; because of this, and the switching from submerged to dry peat, there were differences in vegetation composition, photosynthesis and ecosystem respiration. In the peat pans photosynthetic CO2 uptake and ecosystem respiration were greater than in the vegetated haggs and strongly dependent on the depth to water table (r2>0.78, p<0.001). Whilst in the vegetated haggs, photosynthesis and ecosystem respiration had the strongest relationships with normalised difference vegetation index (NDVI) (r2=0.82, p<0.001) and soil temperature at 15 cm depth (r2=0.77, p=0.001). Autotrophic and total below-ground respiration in the vegetated haggs varied with soil temperature; heterotrophic respiration increased as water tables fell. An empirically derived net ecosystem model estimated that over the two growing seasons both the vegetated haggs (29 and 20 gC m 2; 95 % confidence intervals of -570 to 762 and -873 to 1105 gC m-2) and the peat pans (7 and 8 gC m 2; 95 % confidence intervals of -147 to 465 and -136 to 436 gC m 2) were most likely net CO2 sources. This study suggests that not only the visibly degraded bare peat pans but also the surrounding vegetated haggs are losing carbon to the atmosphere, particularly during warmer and drier conditions, highlighting a need for ecohydrological restoration.MomentaSouth West Water (SWW)Dartmoor National Park Authorit

    Drain blocking has limited short-term effects on greenhouse gas fluxes in a Molinia caerulea dominated shallow peatland (article)

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe dataset associated with this article is available in ORE at https://doi.org/10.24378/exe.2723Drained peatlands dominated by purple moor grass (Molinia caerulea) are widespread in the UK and Western Europe. Although substantial carbon stores may be present in these peatlands, in this degraded state they are not currently acting as carbon sinks. Therefore, M.caerulea dominated peatlands have been identified as potential sites for ecohydrological restoration to tackle the current climate emergency. However, at present little is known about whether ditch blocking can raise water tables and promote the recovery of bog plant species, and the subsequent effects on carbon sequestration in these peatlands. To investigate the potential for restoration, we measured changes in water table depth, vegetation composition, photosynthesis at 1000 μmol Photons m−2 s−1 (PG1000), ecosystem respiration (REco) and partitioned below-ground respiration in two M.caerulea dominated peatlands in which drainage ditches had been blocked located in Exmoor National Park, southwest England. Measurements were made in two headwater catchments at ⅛, ¼ and ½ of the distance between adjacent drainage ditches at four control-restored paired sites, during the growing seasons pre- (2012) and post- (2014, 2016 & 2018) restoration. Restoration had a small but significant (p = 0.009) effect on water table depths however, this did not result in a significant change in vegetation composition (p > 0.350). Ecosystem respiration increased in both the control and restored locations following restoration however, this increase was significantly smaller (p = 0.010) at the restored locations, possibly due to a similarly reduced increase in photosynthesis, although this change was not significant (p = 0.116). Below-ground respiration showed no significant changes following restoration. This research illustrates how degraded these shallow peatlands are, and raises concerns that ditch blocking alone may not bring about the high and stable water tables required to perturb the existing Molinia caerulea-dominated ecosystem and substantially alter the carbon balance. Additional restoration measures may be required.South West Water (SWW)University of ExeterTechnology Strategy Board CouncilNatural Environment Research Council (NERC

    New approaches to the restoration of shallow marginal peatlands

    Get PDF
    ArticleGlobally, the historic and recent exploitation of peatlands through management practices such as agricultural reclamation, peat harvesting or forestry, have caused extensive damage to these ecosystems. Their value is now increasingly recognised, and restoration and rehabilitation programmes are underway to improve some of the ecosystem services provided by peatlands: blocking drainage ditches in deep peat has been shown to improve the storage of water, decrease carbon losses in the long-term, and improve biodiversity. However, whilst the restoration process has benefitted from experience and technical advice gained from restoration of deep peatlands, shallow peatlands have received less attention in the literature, despite being extensive in both uplands and lowlands. Using the experience gained from the restoration of the shallow peatlands of Exmoor National Park (UK), and two test catchments in particular, this paper provides technical guidance which can be applied to the restoration of other shallow peatlands worldwide. Experience showed that integrating knowledge of the historical environment at the planning stage of restoration was essential, as it enabled the effective mitigation of any threat to archaeological features and sites. The use of bales, commonly employed in other upland ecosystems, was found to be problematic. Instead, ‘leaky dams’ or wood and peat combination dams were used, which are both more efficient at reducing and diverting the flow, and longer lasting than bale dams. Finally, an average restoration cost (£306 ha-1) for Exmoor, below the median national value across the whole of the UK, demonstrates the cost-effectiveness of these techniques. However, local differences in peat depth and ditch characteristics (i.e. length, depth and width) between sites affect both the feasibility and the cost of restoration. Overall, the restoration of shallow peatlands is shown to be technically viable; this paper provides a template for such process over analogous landscapes.South West WaterUniversity of ExeterTechnology Strategy BoardNERCKnowledge Transfer Partnership programm

    School performance in Australia: is there a role for quasi-markets?

    Get PDF
    Recent changes to the organisation of Australia's education system have raised the possibility of implementing wide-ranging market reforms. In this article we discuss the scope for introducing reforms similar to the United Kingdom's 'quasi-market' model. We discuss the role of school league tables in providing signals and incentives in a quasi-market. Specifically, we compare a range of unadjusted and model-based league tables of primary school performance in Queensland's public education system. These comparisons indicate that model-based tables which account for socio-economic status and student intake quality vary significantly from the unadjusted tables

    Antibaryon density in the central rapidity region of a heavy ion collision

    Get PDF
    We consider (anti-)baryons production in heavy ion collisions as production of topological defects during the chiral phase transition. Non-zero quark masses which explicitly break chiral symmetry supress the (anti-)baryon density. Hardly any (anti-)baryons will be produced in the central rapidity region of a heavy ion collision.Comment: 3 pages in RevTex, 3 .ps file

    Linear and nonlinear rheology of wormlike micelles

    Get PDF
    Several surfactant molecules self-assemble in solution to form long, cylindrical, flexible wormlike micelles. These micelles can be entangled with each other leading to viscoelastic phases. The rheological properties of such phases are very interesting and have been the subject of a large number of experimental and theoretical studies in recent years. We shall report on our recent work on the macrorheology, microrheology and nonlinear flow behaviour of dilute aqueous solutions of a surfactant CTAT (Cetyltrimethylammonium Tosilate). This system forms elongated micelles and exhibits strong viscoelasticity at low concentrations (\sim 0.9 wt%) without the addition of electrolytes. Microrheology measurements of G(ω)G(\omega) have been done using diffusing wave spectroscopy which will be compared with the conventional frequency sweep measurements done using a cone and plate rheometer. The second part of the paper deals with the nonlinear rheology where the measured shear stress σ\sigma is a nonmonotonic function of the shear rate γ˙\dot{\gamma}. In stress-controlled experiments, the shear stress shows a plateau for γ˙\dot{\gamma} larger than some critical strain rate, similar to the earlier reports on CPyCl/NaSal system. Cates et al have proposed that the plateau is a signature of mechanical instability in the form of shear bands. We have carried out extensive experiments under controlled strain rate conditions, to study the time-dependence of shear stress. The measured time series of shear stress has been analysed in terms of correlation integrals and Lyapunov exponents to show unambiguously that the behaviour is typical of low dimensional dynamical systems.Comment: 15 pages, 10 eps figure

    Black Holes, Mergers, and the Entropy Budget of the Universe

    Full text link
    Vast amounts of entropy are produced in black hole formation, and the amount of entropy stored in supermassive black holes at the centers of galaxies is now much greater than the entropy free in the rest of the universe. Either mergers involved in forming supermassive black holes are rare,or the holes must be very efficient at capturing nearly all the entropy generated in the process. We argue that this information can be used to constrain supermassive black hole production, and may eventually provide a check on numerical results for mergers involving black holes

    The properties of the local spiral arms from RAVE data: two-dimensional density wave approach

    Get PDF
    Using the RAVE survey, we recently brought to light a gradient in the mean galactocentric radial velocity of stars in the extended solar neighbourhood. This gradient likely originates from non-axisymmetric perturbations of the potential, among which a perturbation by spiral arms is a possible explanation. Here, we apply the traditional density wave theory and analytically model the radial component of the two-dimensional velocity field. Provided that the radial velocity gradient is caused by relatively long-lived spiral arms that can affect stars substantially above the plane, this analytic model provides new independent estimates for the parameters of the Milky Way spiral structure. Our analysis favours a two-armed perturbation with the Sun close to the inner ultra-harmonic 4:1 resonance, with a pattern speed \Omega_p=18.6^{+0.3}_{-0.2} km/s/kpc and a small amplitude A=0.55 \pm 0.02% of the background potential (14% of the background density). This model can serve as a basis for numerical simulations in three dimensions, additionally including a possible influence of the galactic bar and/or other non-axisymmetric modes.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    Quarkonium momentum distributions in photoproduction and B decay

    Get PDF
    According to our present understanding many J/ψJ/\psi production processes proceed through a coloured ccˉc\bar{c} state followed by the emission of soft particles in the quarkonium rest frame. The kinematic effect of soft particle emission is usually a higher-order effect in the non-relativistic expansion, but becomes important near the kinematic endpoint of quarkonium energy (momentum) distributions. In an intermediate region a systematic resummation of the non-relativistic expansion leads to the introduction of so-called `shape functions'. In this paper we provide an implementation of the kinematic effect of soft gluon emission which is consistent with the non-relativistic shape function formalism in the region where it is applicable and which models the extreme endpoint region. We then apply the model to photoproduction of J/ψJ/\psi and J/ψJ/\psi production in BB meson decay. A satisfactory description of BB decay data is obtained. For inelastic charmonium photoproduction we conclude that a sensible comparison of theory with data requires a transverse momentum cut larger than the currently used 1 GeV.Comment: latex, 45 pages; (v2) some typos corrected, version to appear in PR
    corecore