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ASSESSING THE IMPACT OF PEAT EROSION ON GROWING SEASON CO2 24 

FLUXES BY COMPARING EROSIONAL PEAT PANS AND SURROUNDING 25 

VEGETATED HAGGS 26 

ABSTRACT 27 

Peatlands are recognised as an important but vulnerable ecological resource.  28 

Understanding the effects of existing damage, in this case erosion, enables more informed 29 

land management decisions to be made.  Over the growing seasons of 2013 and 2014 30 

photosynthesis and ecosystem respiration were measured using closed chamber 31 

techniques within vegetated haggs and erosional peat pans in Dartmoor National Park, 32 

southwest England.  Below-ground total and heterotrophic respiration were measured and 33 

autotrophic respiration estimated from the vegetated haggs.  34 

The mean water table was significantly higher in the peat pans than in the vegetated 35 

haggs; because of this, and the switching from submerged to dry peat, there were 36 

differences in vegetation composition, photosynthesis and ecosystem respiration.  In the 37 

peat pans photosynthetic CO2 uptake and ecosystem respiration were greater than in the 38 

vegetated haggs and strongly dependent on the depth to water table (r2>0.78, p<0.001).  39 

Whilst in the vegetated haggs, photosynthesis and ecosystem respiration had the 40 

strongest relationships with normalised difference vegetation index (NDVI) (r2=0.82, 41 

p<0.001) and soil temperature at 15 cm depth (r2=0.77, p=0.001).  Autotrophic and total 42 

below-ground respiration in the vegetated haggs varied with soil temperature; 43 

heterotrophic respiration increased as water tables fell.  An empirically derived net 44 

ecosystem model estimated that over the two growing seasons both the vegetated haggs 45 

(29 and 20 gC m-2; 95 % confidence intervals of -570 to 762 and -873 to 1105 gC m-2) and 46 

the peat pans (7 and 8 gC m-2; 95 % confidence intervals of -147 to 465 and -136 to 47 

436 gC m-2) were most likely net CO2 sources.  This study suggests that not only the 48 

visibly degraded bare peat pans but also the surrounding vegetated haggs are losing 49 
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carbon to the atmosphere, particularly during warmer and drier conditions, highlighting a 50 

need for ecohydrological restoration. 51 

KEYWORDS 52 

Photosynthesis; Ecosystem respiration; Heterotrophic respiration; peatland; carbon 53 

dioxide; blanket bog; 54 

HIGHLIGHTS 55 

 The effect of peatland erosion on CO2 fluxes was studied to support land 56 

management 57 

 Closed chamber measurements from blanket bog haggs and eroding peat pans, 58 

Dartmoor 59 

 Peat pans were intermittently dry with less vegetation cover and species diversity  60 

 PG and REco were driven by WTD in the pans and NDVI & soil temperature in the 61 

haggs 62 

 Vegetated haggs & peat pans were growing season net CO2 sources; carbon is 63 

being lost 64 

1 INTRODUCTION 65 

Peatlands are recognised as valuable ecological resources providing a range of 66 

ecosystem services including food provision, flood alleviation, drinking water supply, 67 

amenity value and carbon sequestration (Grand-Clement et al. 2013).  However, many 68 

peatlands are damaged, putting these ecosystem services at risk (Holden et al. 2007).  69 

Projects aimed at restoring the ecohydrological functioning of mires are more likely to set 70 

realistic targets and succeed where the effects of existing damage are understood 71 

(Bonnett et al. 2009).   72 
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Blanket bogs form in cool (< 15 °C mean summer temperatures) and wet (>1000 mm rain 73 

annually) conditions (Lindsay et al. 1988).  They consist of multiple peat-forming 74 

conditions (e.g. raised bogs, watershed mires, flushes etc.) which have spread 75 

laterally and joined together smothering the underlying topography.  As they rise 76 

above the influence of groundwater they are dependent on precipitation for both water 77 

and nutrients (Moore 1987) resulting in acidic nutrient poor conditions.  In the UK, 78 

ecohydrologically functioning blanket bogs are dominated by Sphagnum species 79 

which maintain the water table at or above the ground surface (Clymo 1983; Evans et 80 

al. 1999; Holden et al. 2011).  The UK has 10-15 % of the world’s blanket peat 81 

resource (Tallis 1997) primarily located in upland areas, consequently they are 82 

globally important. 83 

Burning, grazing, deposition of atmospheric pollutants (Yeloff et al. 2006), thawing 84 

permafrost (Schuur et al. 2008) and climate change (Stevenson et al. 1990) have all been 85 

proposed as causes of peatland erosion.  These can initiate a feedback loop where peat 86 

erosion reduces vegetation cover leaving bare peat more susceptible to further erosion by 87 

fluvial, aeolian and freeze-thaw processes forming erosional features (Bragg and Tallis 88 

2001).  These features are of great concern as they drain the peat, resulting in particulate 89 

organic carbon losses downstream (Evans et al. 2006) and water table draw-down in the 90 

surrounding vegetated areas (Daniels et al. 2008), altering vegetation composition and 91 

CO2 fluxes beyond their extent (Clay et al. 2012).  92 

Lower water tables have been shown to alter the vegetation present away from Sphagnum 93 

towards vascular plants such as Molinia caerulea, Calluna vulgaris and Eriophorum 94 

species (Coulson et al. 1990; Bellamy et al. 2012).  These species have larger and more 95 

dynamic CO2 fluxes (McNamara et al. 2008; Otieno et al. 2009) but are more readily 96 

decomposed (Coulson and Butterfield 1978; Wallen 1993; Thormann et al. 1999) and 97 

therefore contribute little to the long-term carbon store compared to Sphagnum.  98 
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Additionally vascular plants can have extensive root systems which may stimulate the 99 

decomposition of more recalcitrant deeper peat (Fontaine et al. 2007). 100 

To date, studies on CO2 fluxes from eroding blanket bogs (McNamara et al. 2008; Clay et 101 

al. 2012; Dixon et al. 2013; Rowson et al. 2013) have been focused in northern England 102 

where erosional gullies are steeper, deeper and wider (up to 3 m) than the peat pans of 103 

Dartmoor (up to 1.5 m wide and typically < 50 cm deep).  It is unclear what initiated erosion 104 

on Dartmoor but peat pans (shallow, sparsely vegetated, hydraulically-connected, 105 

intermittently saturated depressions) and haggs (surrounding vegetated blocks) are 106 

limited to flat areas with insufficient erosional energy for gullies to form.  They expand as 107 

the water level is lowered around the edges of the vegetated haggs destabilising the peat 108 

(Luscombe, pers. comm. 2018).   109 

The deep peats of Dartmoor store an estimated 13.1 Mt of carbon (Gatis et al. 2019) but 110 

are vulnerable to climate change as they lie at the southern limit of the UK blanket bog 111 

climatic envelope (Clark et al. 2010).  This makes them invaluable as indicators of the 112 

potential effects of climate change on other, more northerly, maritime peatlands.  113 

Understanding the controls on CO2 fluxes on Dartmoor may provide an indication of the 114 

future for other deep peats as temperatures rise potentially initiating more erosion.  The 115 

aim of this study was to investigate the controls on CO2 fluxes in peat haggs and peat 116 

pans and quantify CO2 fluxes from these landscape components.   117 

2 MATERIAL AND METHODS 118 

2.1 STUDY SITE 119 

The study site is located in an area of degraded blanket bog in Dartmoor National Park 120 

(Figure 1A and B), southwest England (50°36N, 3°57’W).  At Princetown (Figure 1B) the 121 

long-term average annual precipitation is 1974 mm and has a mean monthly temperature 122 

range of 0.8 to 17.7 °C.  The site lies at 515 m above sea level and is classified as National 123 
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Vegetation Classification class M17 Scirpus cespitosus-Eriophorum vaginatum blanket 124 

mire (Rodwell 1991).  Peat at the study site is estimated to be between 3.6 and 4.0 m thick 125 

(Gatis et al. 2019) above the average for Dartmoor (0.81 m) (Parry et al. 2012).  The study 126 

site is within an extensive area of erosional peat pans and vegetated haggs (Figure 1C 127 

and D).  The areas is currently used for extensive sheep grazing.    128 

2.2 NET CO2 ECOSYSTEM EXCHANGE MEASUREMENTS  129 

Net CO2 Ecosystem Exchange (NEE) measurements were taken on 10 separate dates at 130 

six locations in the vegetated haggs in a randomised pattern approximately every month 131 

between 05/06/2013 and 20/09/2013 and 10/04/2014 and 10/09/2014.  A 20 cm diameter, 132 

50 cm tall Perspex collar was attached to the peat surface prior to each measurement 133 

using silicon putty (Evo-Stick “Plumbers Mait”, Stafford, UK), and subsequently removed 134 

at the end of the measurement.  The collar was 50 cm tall to allow for the expected mid-135 

summer vegetation height.  The collar was not inserted into the peat as this severs fine 136 

surface roots (Heinemeyer et al. 2011) and alters the hydrological and micro-137 

meteorological properties of the peat.  Due to limited moss coverage it was possible to 138 

ensure a good seal with the peat surface directly using silicon putty.  A LiCOR-8100 infra-139 

red gas analyser (LiCOR, Lincoln, Nebraska) connected to a 8100-104C transparent 140 

chamber (with a rubber gasket to ensure an airtight seal) measured variation in CO2 141 

concentrations every 2 seconds over 2 minutes concurrently with photosynthetic photon 142 

flux density (PPFD) (LiCOR Li-190 Quantum Sensor).  In order to limit the weight of 143 

equipment carried to site it was not possible to control chamber temperature, therefore 144 

temperature may have increased during the test potentially stressing the plants resulting 145 

in an underestimate of photosynthesis.  The variation in chamber temperature over the 146 

tests ranged from 0.0 to 1.4 °C.  To further limit this effect the chamber was removed 147 

between measurements to restore ambient conditions.   148 
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In the peat pans CO2 measurements were taken on 15 separate dates at six locations in 149 

a randomised pattern approximately every two weeks (concurrent with soil respiration 150 

measurements) from 29/05/2013 to 07/10/2013 and 14/04/2014 and 11/09/2014.  The 151 

8100-104C transparent chamber was too heavy to float so CO2 concentration was 152 

measured from a 16 cm diameter, 13 cm tall floating collars every 9 seconds over 90 153 

seconds using an EGM-4 infra-red gas analyser and a transparent CPY-4 canopy 154 

assimilation chamber (2.427l) (PP Systems, Hitchin) concurrently with chamber air 155 

temperature and PPFD.  No ebullition or sudden increases in CO2 suggestive of ebullition 156 

were observed so it is assumed CO2 was not released via this mechanism.  Measurement 157 

of the same location via the two different methods resulted in an uncertainty of 158 

0.2 μmol m-2 s-1.     159 

CO2 measurements were taken on sunny days at 100, 60, 40, 10 and 0 % light levels 160 

using a combination of shade cloths.  It is acknowledged that shade cloths can 161 

underestimate photosynthesis at low light levels compared to naturally low light conditions.  162 

However, this seemed the most practical solution given the remoteness of the site and 163 

labour availability.  The net CO2 exchange at each light level was calculated from the linear 164 

change in chamber CO2 concentration.  Linear accumulation rates with an r2 of less than 165 

0.7 were discarded unless the maximum change in CO2 concentration was ≤1 ppm in 166 

which case a flux of 0 μmol m-2 s-1 was assigned.  Of the 1041 samples collected, 8 were 167 

discarded from the vegetated haggs and 25 from the peat pans at this stage.     168 

To account for variability in solar radiation between measurements, net CO2 fluxes were 169 

fitted to a hyperbolic light response curve (Equation 1) using a non-linear least-squares fit 170 

across the different light levels measured for each plot for each month.   171 

Equation 1 172 

NEE = 𝑅Eco − 
𝑃𝑚𝑎𝑥 .PPFD

𝑘 + PPFD
  173 
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where NEE is the net CO2 ecosystem exchange (μmol m-2 s-1), Pmax is the rate of light 174 

saturated photosynthesis (μmol m-2 s-1), k is the half-saturation constant of photosynthesis 175 

(μmol photons m-2 s-1), PPFD the incident photosynthetic photon flux density (PPFD) 176 

(μmol Photons m-2 s-1) and REco ecosystem respiration (μmol m-2 s-1).  Only light response 177 

curves with an r2 > 0.7 were accepted therefore a further 11 and 171 measurements from 178 

the vegetated haggs and peat pans respectively were discarded. 179 

REco was determined for each plot from each light response curve (one per sample day) 180 

using equation 1.  Photosynthesis and net ecosystem exchange were then determined for 181 

a PPFD of 1000 μmol photons m-2 s-1 (PG1000 and NEE1000), the light saturated 182 

photosynthesis rate, using Equation 1 and the parameters Pmax, and K previously 183 

determined from each light response curve.  As different PPFD meters were used in the 184 

peat pans and vegetated haggs, a cross-calibration with a continuous (every 15 minute) 185 

onsite global irradiation meter (r2>0.90, n=284; Adcon, Klosterneuburg, Austria) was used 186 

to ensure that fluxes were being standardised to the same light intensity. 187 

2.3 SOIL CO2 EFFLUX MEASUREMENTS 188 

At each vegetated hagg plot four Polyvinyl Chloride collars (16 cm diameter, 8 cm height) 189 

were installed within 50 cm of the NEE plots ( 190 

191 
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 192 
  193 
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Figure 2).  These were sealed to the peat surface in March 2013 using non-setting putty 194 

(Evo Stick “Plumbers Mait”, Stafford, UK).  All collars (n=24) had above-ground vegetation 195 

removed by regular clipping so they measured below-ground fluxes only.  In addition, 56 196 

cm diameter, 20 cm deep trenches were cut around half the collars to exclude live roots 197 

enabling measurement of the below-ground heterotrophic component.  At each of six 198 

plots, the two replicates of each treatment were averaged to produce a single value for 199 

total soil (clipped) and heterotrophic soil (trenched and clipped) respiration.  Repeated 200 

trenching was used to prevent root re-growth, rather than a barrier, to minimise the effect 201 

on the hydraulic properties of the peat. 202 

Trenching and clipping were chosen as inexpensive, simple and established methods 203 

subject to well documented uncertainties (Kuzyakov and Larionova 2005; Subke et al. 204 

2006) such as severing roots which decompose leading to an overestimation of 205 

heterotrophic respiration.  Collars were installed 2 months prior to the start of sampling to 206 

reduce disturbance effects. 207 

Soil CO2 flux measurements were taken on 17 separate dates in a randomised pattern 208 

approximately every two weeks from 13/05/2013 to 1/11/2013 and 14/04/2014 to 209 

11/09/2014.  CO2 flux was measured over 2 minutes using an EGM-4 infra-red gas 210 

analyser and a CPY-4 canopy assimilation chamber (PP Systems, Hitchin, UK).  The 211 

autotrophic component of soil respiration was calculated from the difference between total 212 

and heterotrophic soil respiration measured at each location for each sample round.   213 

2.4 AUXILIARY MEASUREMENTS 214 

Concurrently with both NEE and soil CO2 flux measurements soil temperature was 215 

recorded down a single vertical profile at 5, 10, 15, 20, 25 and 30 cm (Electronic 216 

Temperature Instruments, Worthing) below the peat surface in the vegetated haggs.  In 217 

both the peat pans and the vegetated haggs the water table depth below the peat surface 218 

was measured using a ruler in a perforated tube.  Water table depths were measured at 219 
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nearby dipwells automatically every 15 minutes with in-situ submersible water pressure 220 

transducers (IMSL Geo100 Impress, UK).  Soil temperature was continuously measured 221 

at a depth of 15 cm every 15 minutes (Gemini Data Loggers, Chichester, UK) at vegetated 222 

plot 4.  Rainfall was measured using a tipping bucket rain gauge (0.2 mm tip, RT1, Adcon 223 

Telemetry, Austria).  Global irradiation was measured every 15 minutes (Adcon, 224 

Klosterneuburg, Austria).  Data gaps were filled in by correlation (r2=0.91, p<0.001) to the 225 

closest meteorological station, 18 km to the northwest and 340 m lower in elevation than 226 

the study site; North Wyke (UK Meteorological Office 2012) (50°46’N 3°54’W). 227 

2.5 VEGETATION COMPOSITION, SEASONAL DEVELOPMENT AND 228 

PRODUCTIVITY 229 

2.5.1 Vegetation Composition and Productivity 230 

Visual inspection of the area inside the NEE collars in August 2013 assessed the 231 

percentage coverage of each species as well as total cover of bare ground, standing 232 

water, herbs (forbs), grasses, sedges, non-Sphagnum moss and Sphagnum moss.  The 233 

number of species present at each location was counted to derive the species richness.  234 

The Shannon Diversity Index (Shannon 1948) (Equation 2) and Inverse Simpson Diversity 235 

Index (Simpson 1949) (Equation 3) were calculated; the first quantifies the uncertainty in 236 

predicting the next species, whilst the second describes the richness of a community 237 

increasing from 1, a community containing only one species. 238 

Equation 2  239 

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =  ∑ 𝑃𝑖 . 𝑙𝑛𝑃𝑖

𝑛

𝑖=1
 240 

Equation 3 241 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑆𝑖𝑚𝑝𝑠𝑜𝑛 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 1
∑ 𝑁𝑖(𝑁𝑖 − 1)

𝑁(𝑁 − 1)
⁄  242 
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Where n is the number of species encountered and Pi the fraction of the entire population 243 

made up of species I, Ni is the total area of species i present and N the total area of 244 

vegetation. 245 

Ellenberg’s Moisture Indicator Values (Hill et al. 1999)  were determined for each location.  246 

Vascular species have been classified according to their ecological niche on a 12 point 247 

scale ranging from 1 (extreme dryness) to 12 (submerged plants).  The classification 248 

values for the vascular species identified in this study were looked up and the average 249 

value for the species present at each location was calculated.  250 

Destructive samples were collected to measure annual net primary productivity (ANPP) 251 

on 29/08/2013 and 07/08/2014.  The timing was selected to coincide with flowering and 252 

peak biomass of the dominant vegetation, Molinia caerulea.  All green material in a 0.2 x 253 

0.2 m area near the CO2 collars (different location each year) was collected and oven 254 

dried at 78°C to constant mass.  255 

2.5.2 Vegetation Seasonal Development 256 

Proxies for vegetation seasonal development were derived from Moderate Resolution 257 

Imaging Spectoradiometer (MODIS).  MOD15A2 fPAR (1000 x 1000 m resolution) and 258 

MODIS9A1 surface reflectance (500 x 500 m resolution) were downloaded from USGS 259 

Earth Explorer (http://earthexplorer.usgs.gov).  The normalised difference vegetation 260 

index was derived from bands 1 (Red) and 2 (near infra-red) of the surface reflectance 261 

where NDVI = (Band 2 - Band 1) / (band 2 + Band 1).  262 

Data were screened and poor-quality data (cloudy, high aerosol concentrations or poor 263 

geometry) given a weighting of 0 and all other data a weighting of 1.  To minimise variation 264 

due to atmospheric conditions, illumination and observation geometry a third order Fourier 265 

smoothing filter was applied.  Points outside the 99 % confidence interval were excluded.  266 

All remaining points (30 in 2013 and 23 in 2014) were then weighted equally and a Fourier 267 

third order series fitted to form a continuous daily timeseries (Gatis et al. 2017).      268 
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2.6 SEASONAL NET CO2 ECOSYSTEM EXCHANGE ESTIMATION 269 

Seasonal NEE was modelled directly rather than modelling photosynthesis and 270 

ecosystem respiration separately and then combining them.  Modelling the components 271 

separately requires the derivation of gross photosynthesis for each measurement based 272 

on the assumption that the full dark measurement represents ecosystem respiration.  This 273 

adds additional uncertainty.  As the closed chamber method measures NEE it was 274 

decided to work with these data directly.  Given the binary nature of the system, NEE was 275 

parameterised for peat pans (n=398) and vegetated haggs (n=423) separately, using all 276 

the quality controlled closed chamber measurements collected at a range of light levels.   277 

Linear, exponential, Arrhenius, Lloyd-Taylor and tolerance relationships were tested using 278 

combinations of NDVI, soil temperature at a range of depths and water table depths.  The 279 

models selected had the greatest coefficient of regression, smallest root mean square 280 

errors and were the most parsimonious. 281 

The NEE model for the vegetated haggs (Equation 4) had two components, the first is 282 

dependent on NDVI and the second shows an Arrhenius relationship with soil temperature 283 

at 15 cm, the soil depth with the greatest correlation with ecosystem respiration). 284 

 Equation 4  285 

𝑁𝐸𝐸 =  
𝑃𝑚𝑎𝑥. 𝑁𝐷𝑉𝐼. 𝑃𝑃𝐹𝐷

𝐾 + 𝐼
+ 𝑎. 𝑒𝑥𝑝

−𝑏
𝑇⁄

15 286 

The NEE model for the peat pan (Equation 5) is also made up of two components, the first 287 

is dependent on NDVI; the second is dependent on soil temperature at 15 cm depth and 288 

water table depth.    289 

Equation 5 290 

𝑁𝐸𝐸 =
𝑃𝑚𝑎𝑥. 𝑁𝐷𝑉𝐼. 𝑃𝑃𝐹𝐷

𝐾 + 𝐼
 + 𝑐. 𝑒𝑥𝑝𝑑.𝑇15 . 𝑒𝑥𝑝𝑓.𝑊𝑇𝐷 291 
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Where NEE is the net CO2 ecosystem exchange (μmol m-2 s-1), Pmax is the rate of light 292 

saturated photosynthesis (μmol m-2s-1), NDVI the normalised difference vegetation index, 293 

PPFD the incident PPFD (μmol Photons m-2 s-1), k the half-saturation constant of 294 

photosynthesis (μmol photons m-2 s-1), T15 soil temperature at a depth of 15 cm, a, b, c, d 295 

and f (dimensionless) are coefficients.   296 

An hourly timeseries of PPFD was created by correlating episodic measurements taken 297 

concurrently with the flux measurements to global irradiation measured onsite (section 298 

2.4).  Water table depths and soil temperature measured every 15 minutes (section 2.4) 299 

were averaged to produce hourly timeseries.  The growing season was defined as from 300 

the first three consecutive days with daily mean soil temperature > 10°C till the first three 301 

consecutive days with daily soil temperature < 10°C as this is the temperature at which 302 

root initiation and subsequent leaf growth occurs (Taylor et al. 2001). 303 

Seasonal estimates were determined by the accumulation of hourly fluxes over the 304 

duration of the growing season.  Model confidence intervals (95 %) were determined from 305 

the root mean squared error of modelled values compared to measured values.  Input 306 

parameter uncertainty was accounted for by using lower and upper 95 percentile values 307 

in the model.  These two sources of uncertainty were summed together for each hour over 308 

the duration of the growing season.  By convention CO2 fluxes are reported relative to the 309 

atmospheric pool so the peatland is a net CO2 source if positive. 310 

2.7 STATISTICAL ANALYSIS 311 

To assess temporal and spatial variation in water table depth and soil temperature, a two-312 

way repeated measures ANOVA was carried out with time as the within subject factor and 313 

landscape component (hagg or peat pan) as the between subject factor.  To investigate 314 

potential temporal controls on CO2 fluxes, stepwise linear regressions were carried out on 315 

photosynthesis at a PPFD of 1000 μmol photons m-2 s-1 (PG1000), ecosystem respiration 316 

(REco) and total, heterotrophic and autotrophic below-ground respiration as measured and 317 
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natural log-transformed.  The temporal variables tested were water table depth, soil 318 

temperature at 5, 10, 15, 20, 25 and 30 cm, fPAR, NDVI, total PPFD in the preceding day 319 

and hour, total rainfall on the day of measurement (Rain0) and preceding 1,7,14 and 28 320 

days.  Exponential, Arrhenius and Lloyd-Taylor relationships between below-ground 321 

respiration and soil temperature at 5, 10, 15 20, 25 and 30 cm were also tested.     322 

3 RESULTS 323 

3.1 WATER TABLE DEPTH 324 

Water tables were on average deeper and less variable in the vegetated haggs; mean of 325 

9.1 ± 5.4 cm and varying from 28 cm below to 1 cm above ground level compared to a 326 

mean of 7.1 ± 10.1 cm and varying between 23 cm below to 21 cm above ground level in 327 

the peat pans (328 

  329 
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Figure 3).  During the 2013 growing season water table depths fell to a maximum low in 330 

July then rose again until late October 2013.  Water table depths were generally higher in 331 

2014 reaching a maximum in early June and a minimum in early July.  Water tables 332 

dropped below the ground surface at all plots within the peat pans in July 2013.  However, 333 

plots 5 and 6, which were located at a lower elevation than the other plots, had greater 334 

standing water depth and were more often saturated than the other bare peat plots.  Water 335 

table depth varied significantly with time (two-way ANOVA p<0.001) and between haggs 336 

and pans (p=0.004).  337 

3.2 VEGETATION COMPOSITION  338 

Molinia caerulea was present in all vegetated NEE collars (8 to 50 % coverage) and was 339 

the dominant vegetation in 5 out of 6 collars covering 20-50 %.  In vegetated collar 6 340 

Narthecium ossifragum was the most common species (50 %).  Erica tetralix was the only 341 

other species present in all collars (3 to 20 % coverage).  In the peat pans either 342 

Eriophorum angustifolim and/or Sphagnum denticulatum was present.  A full species list 343 

is provided in the supplementary material (Table 1).  Shannon Diversity index, Inverse 344 
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Simpson diversity index, and species richness were all greater in the vegetated haggs (345 

  346 
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Figure 4a, b & c).  This is due to the presence of herbs, grasses and mosses in the 347 

vegetated haggs but not in the peat pans (348 

  349 
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Figure 4f, g & i).  Although there was some vegetation present in all collars, bare ground 350 

and standing water were present in the peat pans but not the vegetated haggs (351 

  352 
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Figure 4k & l).  Ellenberg’s Moisture indicator values denoted the vegetated haggs were 353 

damp and the peat pans wet and often water saturated as observed.  In the vegetated 354 

haggs above-ground annual net primary productivity (ANPP) was not significantly different 355 

between 2013 (217 ±39 g m-2) and 2014 (214 ±23 g m-2).  ANPP was not assessed for the 356 

peat pans.   357 

3.3 SEASONAL CO2 FLUXES 358 

Photosynthesis at a PPFD equivalent to 1000 μmol Photons m-2 s-1 (PG1000) and ecosystem 359 

respiration (REco) followed similar seasonal patterns (360 

  361 
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Figure 5) in the vegetated haggs, with REco and photosynthetic CO2 uptake (PG1000) 362 

increasing through late spring into summer.  The greatest REco was recorded in July 2014 363 

(3.6±0.9 μmol m-2 s-1) whilst the greatest photosynthetic CO2 uptake was measured in 364 

September 2013 (-6.1±2.2 μmol m-2 s-1).  Photosynthetic CO2 uptake peaked towards the 365 

end of the growing season (August and September) whilst REco peaked in mid-summer 366 

(July) reflecting seasonal temperature variation.    367 

In the peat pans REco and photosynthetic CO2 uptake (PG1000) were lower than in the 368 

vegetated haggs (369 

  370 
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Figure 5) except in July 2013 when there was a notable increase coinciding with low water 371 

tables (372 

  373 
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Figure 3).  Neither PG1000 nor REco showed a clear seasonal pattern.   374 

Total and heterotrophic below-ground respiration in the vegetated haggs showed similar 375 

seasonal patterns generally rising from mid-May to late-August then decreasing to late-376 

October in 2013 and rising from mid-April to mid-August in 2014 (377 
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  379 
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Figure 6).  There was noticeably greater respiration in July 2013 when the soil temperature 380 

was greatest (17.6 °C), corresponding to the spike in photosynthetic CO2 uptake and 381 

ecosystem respiration observed in the peat pans (382 

  383 
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Figure 5c).  Heterotrophic respiration was greater than autotrophic respiration except 384 

during October 2013 and July and August 2014.  The proportional contribution of 385 

autotrophic respiration to total soil respiration varied between 1 and 66 % with the lowest 386 

contributions occurring in May 2013 and April 2014 and greater contributions later in the 387 

growing season.  During the growing season autotrophic contributed on average 42 %. 388 

3.4 TEMPORAL CONTROLS ON CO2 FLUXES 389 

Ecosystem respiration and photosynthesis showed no significant relationships with water 390 

table depth in the vegetated haggs (p>0.57) however, in the peat pans ecosystem 391 

respiration and photosynthetic CO2 uptake significantly increased when the water table 392 

fell (Table 1).  This relationship was strongly driven by the high CO2 fluxes (393 

  394 
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Figure 5) and deep water tables in July 2013 (395 

  396 
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Figure 3). In the vegetated haggs photosynthetic CO2 uptake showed the strongest 397 

relationship with NDVI (Table 1), increasing when NDVI increased.  Ecosystem respiration 398 

showed a significant exponential relationship with soil temperature at a depth of 15 cm 399 

(Table 1).  Additional variables did not increase the coefficient of regression for 400 

photosynthesis or ecosystem respiration in the vegetated haggs or peat pans. 401 

Of the soil temperature depths measured, total and heterotrophic below-ground 402 

respiration showed the strongest regression coefficients with an exponential function 403 

dependent on soil temperature at a depth of 5 cm (Figure 7a & b) with respiration 404 

increasing as temperature increased.  Autotrophic respiration, although significantly 405 

related to soil temperature at 5 cm (Figure 7c), showed the strongest exponential 406 

relationship with soil temperature at 30 cm (Table 1, Figure 7e).  Multiple regression 407 

analysis indicated that water table depth was a stronger factor than soil temperature in 408 

controlling heterotrophic respiration (Table 1).  Adding total rainfall on the preceding day 409 

increased the proportion of variability explained by 8 %.  Total and autotrophic below-410 

ground respiration were also significantly related to water table depth (Figure 7a & e) with 411 

higher respiration rates during dry conditions but their relationships with soil temperature 412 

were dominant (Table 1).    413 

3.5 SEASONAL NET CO2 ECOSYSTEM EXCHANGE ESTIMATION 414 

The model for the vegetated haggs (Equation 4, Table 2), based on all the CO2 flux 415 

measurements collected explained a greater proportion of the variability (76 %) than the 416 

model (Equation 5, Table 2) for the peat pans (67 %) however, it also had greater root 417 

mean square errors (Table 2).  It can be seen that the model errors (Table 2) are large 418 

when compared to PG1000 and REco (Figure 5) resulting in great uncertainty in the seasonal 419 

estimates (Table 3).  It is estimated that it is most likely both the vegetated haggs and the 420 

peat pans were net CO2 sources over the 2013 and 2014 growing seasons (Table 3).    421 
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4 DISCUSSION 422 

4.1 HAGGS AND PANS: A BINARY SYSTEM 423 

4.1.1 Water Table Depths and Vegetation Composition 424 

Average water table depth in the vegetated haggs (9.1±0.4 cm) was shallower than those 425 

reported for inter-gully areas (23.4±8 cm) (McNamara et al. 2008) and upslope of drainage 426 

ditches (19.8±0.38 cm) (Coulson et al. 1990) in Calluna vulgaris dominated British blanket 427 

bogs.  In addition, peat pans were frequently inundated (428 

  429 
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Figure 3) suggesting these peat pans function differently to both gullies (McNamara et al. 430 

2008; Dixon et al. 2013) and drainage ditches (Cooper et al. 2014) where the water table 431 

is more commonly below ground level except during storm events.  It is likely the shallow 432 

topographic gradients and poor connectivity between peat pans (Figure 1C) resulted in 433 

less water table drawdown in the peat pans when compared to both erosional gullies and 434 

drainage ditches (Parry et al. 2014).  Despite this, hydrological monitoring at this site has 435 

shown that in the vegetated haggs the water table drops lower adjacent to the peat pans 436 

than further away (Luscombe, pers. comm. 2018). Sphagnum cover was <20 % in the 437 

vegetated haggs whilst cover of grasses and herbs reached 53 and 50 % respectively (438 

  439 
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Figure 4f, g & j) further indicating the deterioration of ecohydrological function in the 440 

vegetated haggs. 441 

Vegetation in the peat pans was sparse (442 

  443 
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Figure 4). This could be because active erosion (Foulds and Warburton 2007) removed 444 

peat preventing a continuous vegetation cover from developing (Ingram 1967).  In 445 

addition, intermittent dry conditions (446 

  447 
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Figure 3) may have made re-colonisation impossible for Sphagnum species (Price and 448 

Whitehead 2001).  Eriophorum vaginatum has been shown to recolonise gullies starting 449 

from zones of redeposited peat (Crowe et al. 2008) and facilitate recolonization by other 450 

species (Tuittila et al. 2000).  On Dartmoor, in nearby areas where lower connectivity has 451 

limited erosion and maintained more stable water tables, dense areas of Eriophorum 452 

angustifolim have formed.  This suggests that if erosion could be halted and water tables 453 

stabilised then vegetation would be expected to recolonise these sparsely vegetated 454 

areas.  455 

4.1.2 CO2 Fluxes 456 

Photosynthetic CO2 uptake and ecosystem respiration were lower in the peat pans than 457 

in the vegetated haggs (458 

  459 
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Figure 5) even allowing for a 0.2 μmol m-2 s-1 uncertainty due to different CO2 chambers 460 

(15.7 l compared to 2.4 l) and analysers (Li-8100 compared to EGM-4) (section 2.2).  This 461 

difference was most likely driven by significant variation in vegetation diversity, species 462 

richness and vegetation cover (463 

  464 
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Figure 4) due to different water table depths (465 

  466 
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Figure 3).   467 

Summer mean PG1000 (-1.0 μmol m-2  s-1) from the peat pans was similar to an Eriophorum 468 

spp., Vaccinium myrtillus and bare peat naturally revegetating gully (-1.1 469 

to -1.6 μmol m-2 s-1) (Clay et al. 2012; Dixon et al. 2015) but photosynthetic CO2 uptake 470 

was less than a rewet cut-away Eriophorum spp. dominated peatland (-2.3 μmol m-2 s-1) 471 

(Wilson et al. 2016) and much less than a rewet cut-away Eriophorum spp. tussock 472 

(-15.5 μmol m-2  s-1) (Tuittila et al. 1999).  Given these annual results include large periods 473 

with PPFD levels below saturation it can be seen that these peat pans have low primary 474 

productivity even when compared to other damaged peatlands.   475 

There was a notable spike in REco in late July 2013 (2.1 μmol m-2 s-1) (Figure 5) coincident 476 

with warmer and drier conditions (Figure 3).  Although notably higher than other values 477 

recorded in this study, it is approximately half that reported for Eriophorum vaginatum in 478 

a naturally revegetated erosional gully (4.1 μmol m-2 s-1) (McNamara et al. 2008) under 479 

similar water table and temperature conditions.  Growing season mean ecosystem 480 

respiration from the peat pans (0.5 μmol m-2 s-1) was greater than annual (0.2 to 481 

0.4 μmol m-2 s-1) (Clay et al. 2012; Wilson et al. 2013; Dixon et al. 2015) and summer (0.04 482 

μmol m-2 s-1) (Tuittila et al. 1999) REco rates for bare peat most likely due to some, albeit 483 

sparse, vegetation cover.  However, compared to annual mean REco for an Eriophorum 484 

spp. and bare peat channel floor (0.6 μmol m-2 s-1) (Clay et al. 2012) and Eriophorum spp. 485 

and Sphagnum spp. rewet cut-away peat (0.5 m-2 s-1) (Wilson et al. 2016) the summer 486 

mean REco from the peat pans seems low.  Again this probably reflects variation in 487 

vegetation cover and low primary productivity rather than differences in water tables 488 

directly, as the rewet peatland was wetter (-9.5 to -15.5 cm) (Wilson et al. 2016) than this 489 

study and the natural channel (13.9 cm) (Clay et al. 2012) drier.   490 

Maximum REco in the vegetated haggs (3.6 μmol m-2 s-1) was similar to August REco from 491 

Moor House, a Calluna vulgaris, Eriophorum vaginatum and Sphagnum spp. upland 492 
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blanket bog,  (3.3 to 3.4 μmol m-2 s-1) (Hardie et al. 2009; Lloyd 2010).  Summer mean 493 

REco (2.4 μmol m-2 s-1) was smaller than for a Vaccinium spp., Eriophorum vaginatum, 494 

Molinia caerulea and Calluna vulgaris upland bog (3.1 μmol m-2 s-1) (Urbanová et al. 2012) 495 

however, the mean water table was deeper in this drained bog (19.5 cm). 496 

Heterotrophic respiration rates (497 



38 
 

 498 

  499 
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Figure 6) were generally lower on Dartmoor (mean and maximum of 0.8 and 500 

2.7 μmol m-2 s-1) compared to those from August and September at Moor House (1.0 to 501 

1.7 μmol m-2 s-1 (Hardie et al. 2009; Heinemeyer et al. 2011).  This is surprising given the 502 

difference in water table depths; 0 to 8 cm at Moor House (Hardie et al. 2009) compared 503 

to -1 to 28 cm in this study.  It is possible variation in leaf litter quality (Ward et al. 2010) 504 

and quantity affected heterotrophic respiration rates.  However, as the two studies at Moor 505 

House were based on only four sample events there is insufficient data to fully understand 506 

these differences. 507 

Clipping and trenching severs roots which decompose leading to an overestimation of 508 

heterotrophic respiration (Kuzyakov and Larionova 2005; Subke et al. 2006) and therefore 509 

an underestimation of autotrophic respiration.  Collars were installed 2 months prior to the 510 

start of sampling to reduce disturbance effects and the data do not show a systematic 511 

decrease in the proportion of heterotrophic respiration over time (Figure 6) suggesting the 512 

effects were minimal.   513 

Summer mean PG1000 (3.8 μmol m-2 s-1) in the vegetated haggs was similar to summer 514 

mean photosynthesis for a Vaccinium spp., Eriophorum vaginatum, Molinia caerulea and 515 

Calluna vulgaris upland bog (-4.2 μmol m-2 s-1) (Urbanová et al. 2012), however this 516 

includes periods with lower PPFD so it is difficult to compare these values.  Maximum 517 

photosynthetic CO2 uptake (PG1000) (-6.1 μmol m-2 s-1) in this study was greater than 518 

maximum potential photosynthesis (Pmax) from Calluna vulgaris, Erica tetralix, Molinia 519 

caerulea and Sphagnum spp. hummocks in Irish blanket bog (-4.2 μmol m-2 s-1) (Laine et 520 

al. 2006) but less than those reported for a Calluna vulgaris, Eriophorum vaginatum and 521 

Sphagnum spp. upland blanket bog (Moorhouse (-16.3 to -16.9 μmol m-2 s-1) (Lloyd 2010).  522 

The bogs in these studies had similar vegetation to this study (Molinia caerulea, Erica 523 

Tetralix, Eriophorum angustifolium, Calluna vulgaris) but given the sensitivity of 524 

photosynthesis to vegetation composition it is likely much of this variation is due to 525 

differences in the vegetation community present.  However, above-ground annual net 526 
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primary productivity was greater at Moor House, (approximately 300 g m-2) (Ward et al. 527 

2007) than Dartmoor (214±23 g m-2  in 2014) so the greater rates of photosynthesis may 528 

also in part be due to greater biomass, reflecting more optimum growing conditions.   529 

The summer maximum photosynthetic CO2 uptake (PG1000) and REco measured in this 530 

study (531 

  532 
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Figure 5a & b) were  lower than those found on Exmoor (-23.1 and 10.9  μmol m-2 s-1 533 

respectively) (Gatis 2015), an upland also located within the south west of England.  On 534 

Exmoor Molinia caerulea is more dominant and grows taller (up to 60 cm) than on 535 

Dartmoor (up to 20 cm). This is reflected in greater above-ground annual net primary 536 

productivity (ANPP); 517±30 g m-2 on Exmoor.  A greater quantity of leaf litter resulting 537 

from greater ANPP may also explain the higher rates of heterotrophic respiration on 538 

Exmoor (1.5 ±0.1 μmol m-2 s-1) (Gatis 2015) where peat thickness is shallower (<0.56 m).  539 

As high rates of photosynthesis have been found to increase autotrophic respiration 540 

(Subke et al. 2006) the difference in photosynthetic rates observed between these moors 541 

may explain the lower average autotrophic respiration rates from Dartmoor (542 
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Figure 6) than Exmoor (1.3 ± 0.2 μmol m-2 s-1).  No other values for autotrophic respiration 545 

could be found for comparison in this region, reflecting the large uncertainty in measuring 546 

autotrophic respiration (Subke et al. 2006).  547 

4.2 DRIVERS OF TEMPORAL VARIATION IN CO2 FLUXES 548 

In the vegetated haggs and peat pans, photosynthetic uptake at 1000 μmol Photons m-549 

2 s-1
 became significantly greater during periods of higher NDVI (Table 1).  Photosynthesis 550 

has been related to vegetation seasonal development measured by NDVI in northern 551 

peatlands (up to 71 % of variation explained) (Kross et al. 2013), NDVI in alpine 552 

grasslands (71 % of variation explained) (Rossini et al. 2012), leaf area (Nieveen et al. 553 

1998; Street et al. 2007; Otieno et al. 2009), vegetative green area (Riutta et al. 2007; 554 

Urbanová et al. 2012) and leaf biomass (Bubier et al. 2003).  In the peat pans PG1000 555 

showed no significant relationship with NDVI most likely due to the minimal vegetation 556 

cover.      557 

In the peat pans, both ecosystem respiration and PG1000 (Table 1) showed the strongest 558 

relationships with water table depth.  Photosynthetic CO2 uptake increased in the peat 559 

pans during dry periods (Table 1).  Although Eriophorum angustifolium is a wetland 560 

species, evolved to live in waterlogged conditions, vegetation often close stomata in 561 

response to raised water tables, limiting gases exchange through the leaf surface 562 

(Pezeshki 2001).  Photosynthetic uptake from Eriophorum vaginatum plots has been 563 

found to increase as water levels fall from 16.8 cm to a maximum at 14.6 cm below ground 564 

surface (Riutta et al. 2007).  Where Eriophorum spp. plots were submerged following re-565 

wetting of a cut-over peatland, vegetation cover initially decreased before increasing in 566 

the second year following re-wetting (Tuittila et al. 1999) suggesting Eriophorum spp. can 567 

adapt to submerged conditions but not instantaneously. 568 

Water table depth has commonly been found to influence ecosystem respiration (Tuittila 569 

et al. 1999; Laine et al. 2006, 2007; Riutta et al. 2007; Wilson et al. 2007, 2013; Soini et 570 
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al. 2010) with greater respiration occurring during drier conditions.  Lowering the water 571 

table increases the depth to which oxygen can diffuse, thus enabling more rapid aerobic 572 

heterotrophic respiration to occur (Clymo 1983; Moore and Dalva 1993).  In addition, 573 

greater rates of photosynthetic CO2 uptake and consequently autotrophic respiration also 574 

occurred during periods with lower water tables.   575 

Total, heterotrophic and autotrophic below-ground respiration all showed significant 576 

exponential increase with soil temperature at 5 cm (Figure 7a, b & c).  Soil temperature 577 

measurements from shallower depths have been shown to be better predictors of 578 

respiration (Lafleur et al. 2005; Lloyd 2010) especially when the proportion of autotrophic 579 

respiration is greater, although autotrophic respiration showed the strongest exponential 580 

relationship with soil temperature at 30 cm; the deepest depth measured in this study 581 

(Table 1).  Perhaps reflecting a mix of autotrophic and heterotrophic sources, ecosystem 582 

respiration showed the strongest exponential relationship with soil temperature at 15 cm.  583 

This is similar to the depth found by Updegraff et al. (2001) but deeper than other studies 584 

which found air temperature (Schneider et al. 2012); an average of air temperature and 585 

soil temperature at 20 cm (Laine et al. 2006); soil temperature at 5 cm (Bubier et al. 2003; 586 

Lund et al. 2007; Wilson et al. 2007) and 10 cm (Blodau et al. 2007; Otieno et al. 2009; 587 

Lloyd 2010) to have the strongest relationships.  588 

Soil temperature and water table depths commonly co-vary and interact to amplify effects 589 

on below-ground respiration.  For example, warm and dry conditions are often concurrent, 590 

with both conditions increasing rates of below-ground respiration (Figure 7).    Water table 591 

depths did show a significant relationship with total, heterotrophic and autotrophic soil 592 

respiration (Figure 7) indicating respiration increased during periods of lower water tables.  593 

However, multiple regressions indicated that soil temperature was the primary control on 594 

below-ground autotrophic and total soil respiration suggesting the apparent relationship 595 

with water table depth may have been due to co-variation of water table depths and soil 596 

temperature.    597 
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Water table depth was the strongest control on heterotrophic respiration possibly due to 598 

increased aerobic heterotrophic respiration (Clymo 1983; Moore and Dalva 1993) and 599 

enhanced gas diffusion through oxygenated peat  (Blodau and Moore 2003).  Although 600 

below-ground respiration varied with water table, ecosystem respiration did not (Table 1) 601 

possibly due to different drivers affecting the multiple respiration sources that contribute 602 

to ecosystem respiration.  This is consistent with other studies that have found 603 

temperature to be the main control on ecosystem respiration under wet conditions 604 

(Updegraff et al. 2001; Bubier et al. 2003) and within Molinia caerulea dominated systems 605 

(Nieveen et al. 1998) but in contrast to studies that found water level to have the strongest 606 

control over respiration (Silvola et al. 1996) or a small but significant effect (Lafleur et al. 607 

2005; Otieno et al. 2009).  608 

4.3 SEASONAL NET CO2 ECOSYSTEM EXCHANGE 609 

Given the sparse vegetation cover (Figure 4) it was unsurprising that the peat pans were 610 

gaseous CO2 (Table 3) as well as aquatic carbon sources (Malone, pers. comm. 2018) 611 

over the growing season.  NEE fluxes (0.1 gCO2 m-2 d-1) were lower than those observed 612 

for bare Canadian cut-over peat (0.6 to 2.1 gCO2 m-2 d-1) (Waddington et al. 2010) and 613 

Eriophorum spp. tussock and inter-tussock plots in a Finnish cut-over peatland (0.3 to 1.2 614 

gCO2 m-2 d-1) (Tuittila et al. 1999).  This might be due to the limited vegetation cover as a 615 

closed Eriophorum spp. cover has been found to be a smaller net CO2 source (or even a 616 

net CO2 sink) compared to a non-vegetated surface under the same environmental 617 

conditions (Tuittila et al. 1999).   618 

It was unexpected that the vegetated plots were a greater net CO2 source over the growing 619 

season (Table 3) given the greater vegetation cover (Figure 4).  However, Hardie et al. 620 

(2009) found 37-35 % of summer ecosystem respiration flux to be from soil (RBG-ToT) 621 

suggesting 63-66 % was from the vegetation so although the vegetated haggs had greater 622 

photosynthesis much of this would be rapidly re-released.  In addition, root exudates add 623 



46 
 

fresh organic matter to the subsurface stimulating microbes to decompose more 624 

recalcitrant peat (Fontaine et al. 2007).  This would be enhanced by deeper water table 625 

depths in the vegetated haggs (Figure 3) allowing oxygen to penetrate deeper into the 626 

peat resulting in increased decomposition (Silvola et al. 1996).   627 

Other studies in a range of peatlands have also reported vegetated plots to be growing 628 

season net CO2 sources (Tuittila et al. 1999; Waddington et al. 2010; Urbanová et al. 629 

2012; Strack and Zuback 2013).  During measurements all sites were net CO2 sinks, 630 

however, these were collected during bright, daytime conditions.  It should be noted that 631 

this model assumes the dependency of ecosystem respiration on temperature is the same 632 

in the day and night.  Daily variation in autotrophic respiration (and primed heterotrophic 633 

respiration) has been shown to result in significant differences between day and night REco 634 

at the same temperatures (Juszczak et al. 2012; Wohlfahrt and Galvagno 2017).  635 

Therefore, it is most likely ecosystem respiration is overestimated by this model.  In 636 

addition, shade cloths underestimate photosynthesis at low light levels compared to 637 

naturally low light conditions and a lack of temperature control within the chamber may 638 

have resulted in plant stress also underestimating photosynthesis.  Consequently, this 639 

experimental design is biased towards overestimating CO2 release. 640 

The models explained 76 % of the variability in observed NEE in the vegetated haggs and 641 

67 % in the peat pans (Table 2) however, the root mean square errors are large in 642 

comparison to PG1000 and REco fluxes observed (Figure 5).  This has resulted in 643 

uncertainties many times larger than seasonal NEE estimates (Table 3).  This uncertainty 644 

consists of both natural variability which is known to be significant when using multiple 645 

plots (Laine et al. 2009) and uncertainty associated with modelling.  It has been shown 646 

that different treatment of closed chamber data can result in variation in estimated NEE of 647 

0.25 gCO2 m-2 d-1 over annual estimates (Huth et al. 2017) sufficient to change the 648 

estimate of ecosystem exchange from a net CO2 source to a net CO2 sink.  Accepting this 649 
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uncertainty, the models suggest both landscape components are losing carbon with 650 

greater loss from the haggs even with a greater vegetation cover. 651 

Given, that in this study, NEE was modelled for the growing season only, when the 652 

majority of carbon uptake occurs, Dartmoor would be expected to be a larger source over 653 

the whole year.  This suggests peat pan formation and expansion has altered the 654 

ecohydrological functioning of the whole mire not just the eroded pan areas, altering the 655 

balance of CO2 uptake and release towards carbon loss.  Ecohydrological restoration is 656 

required to prevent further carbon loss and promote a return to carbon sequestration. 657 

In the UK restoration schemes have blocked erosional gullies using a combination of 658 

materials (peat, wood, stone, plastic piling and heather bales) to slow water flow, trap 659 

sediment and raise local water tables (Parry et al. 2014).  This would be expected to halt 660 

the expansion of the peat pans and encourage peat deposition behind dams which should 661 

provide zones for colonisation by pioneering species such as Eriophorum spp. (Crowe et 662 

al. 2008) which may facilitate recolonization by other species (Tuittila et al. 2000).  In rewet 663 

cut-away peatlands high and stable water tables have been found to rapidly increase 664 

Eriophorum spp. cover but also shift Eriophorum spp. dominated plots towards growing 665 

season net CO2 sinks (Tuittila et al. 1999; Waddington et al. 2010).  In the vegetated haggs 666 

the response would be expected to vary with vegetation type (Komulainen et al. 1999) 667 

with raised water tables reducing respiration but also possibly photosynthesis.  It should 668 

be noted that this study has focused on CO2, raising water tables has been shown to 669 

increase the release of CH4 particularly in areas of open water (Best and Jacobs 1997; 670 

Komulainen et al. 1998; Strack and Zuback 2013; Cooper et al. 2014; Wilson et al. 2016).  671 

However, in the longer-term, higher and more stable water tables might alter the 672 

vegetation present towards those associated with wetter conditions (Bellamy et al. 2012) 673 

and carbon sequestration. 674 
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5 CONCLUSION 675 

This study aimed to investigate the spatial and temporal controls on CO2 fluxes in a 676 

climatically marginal, eroding blanket bog and to quantify CO2 fluxes from these landscape 677 

components.  Understanding the effects of existing damage and the potential effects of 678 

restoration should enable more informed management choices to be made.  679 

The water table was significantly higher in the peat pans than in the vegetated haggs 680 

resulting in clear differences in vegetation composition and productivity which lead to 681 

significant differences in photosynthesis and ecosystem respiration between these 682 

landscape components.  CO2 fluxes in the peat pans were dominated by changes in water 683 

table depths whilst photosynthesis in the drier vegetated haggs was related to normalised 684 

difference vegetation index (a proxy for vegetation seasonal development).  Although 685 

ecosystem respiration was strongly related to temperature, heterotrophic below-ground 686 

respiration significantly decreased as water tables rose suggesting higher, more stable 687 

water tables may reduce the peat being respired.  An empirically derived net CO2 688 

ecosystem exchange model suggests that over the growing seasons studied the drier 689 

vegetated haggs were a greater net CO2 source than the peat pans despite greater 690 

vegetation cover.   691 

Peat pan formation and expansion has affected the ecohydrological functioning of the 692 

whole mire not just the eroded pan areas.  This demonstrates the need to limit the spread 693 

of bare peat pans to protect the biodiversity of the mire, prevent further loss of stored 694 

carbon and promote a return to carbon sequestration. 695 
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Table 1 Most significant variables from stepwise multiple regression analysis of temporal controls on 931 

average CO2 fluxes; photosynthesis at 1000 μmol Photons m-2 s-1 (PG1000), ecosystem respiration (REco), 932 

total (BGRTot), heterotrophic (BGRHet) and autotrophic (BGRAut) below-ground respiration.   933 

Landscape 
Component 

CO2 Flux 
Variable Coefficient 

P r2 
1 2 1 2 

Vegetated  

PG1000 
(n=10) 

NDVI   -8.951   <0.001 0.82 

LnREco 
(n=14) 

T15   0.172   0.001 0.77 

Peat  

PG1000 
(n=10) 

WTD   -0.111   <0.001 0.87 

REco 
(n=14) 

WTD   0.077   <0.001 0.78 

Vegetated  

LnBGRTot 

(n=17) 
T5   0.21   <0.001 0.72 

BGRHet 

(n=17) 
WTD Rain1 0.125 0.084 <0.001 0.75 

LnBGRAut 

(n=17) 
 T30   0.474   <0.001 0.69 

Input variables: water table depth (WTD), soil temperature and natural log-transformed soil temperature at 5, 10, 15, 20, 25 and 30 cm, 
fraction of photosynthetically active radiation (fPAR), Normalised Difference Vegetation Index (NDVI), total PPFD in the preceding day and 
hour, total rainfall on the day of measurement (Rain0) and preceding 1,7,14 and 28 days. 

 934 

935 
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Table 2 Sample number (n), regression coefficient (r2), root mean squared error (RMSE) and coefficient 936 

estimates (standard errors) used in net CO2 ecosystem exchange models (Equation 4 and 5) 937 

  
Vegetated Hagg  Peat Pan  

n 423 398 

r2 0.76 0.67 

RMSE (umol m-2 s-1) 1.39 0.37 

Coefficient 
estimate 
(standard  

error) 

Pmax -13.05 (0.67) -2.25 (0.19) 

K 1299.27 (241.05) 2606.31 (649.86) 

a or c 11.49 (1.98) 0.05 (0.02) 

b or d 19.49 (2.31) 0.15 (0.03) 

f . 0.06 (0.01) 

 938 

 939 
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Table 3 Estimated seasonal CO2 flux.  Positive values indicate the ecosystem is a net CO2 source to 941 

the atmosphere. 942 

Growing 
Season 

  
CO2 Flux  
(g C m-2) 

95 % Confidence 
Interval 

06/06/2013  
to  

28/10/2013 

Vegetated Haggs 29 -570 to 762 

Peat Pans 7 -147 to 465 

16/05/2014 
to 

12/10/2014 

Vegetated Haggs 20 -873 to 1105 

Peat Pans 8 -136 to 436 
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Figure 1.  Location of A, Dartmoor National Park (shaded area) within the south west of England, B, Study site 944 

(red square) within the national park (grey), C, the study site (black square) within an area of erosion, and D, the 945 

arrangement of plots and monitoring equipment; vegetated (grey squares) and bare (white squares) net CO2 946 

ecosystem exchange and total (white circles) and heterotrophic (black circle) below ground respiration.  In panels 947 

C and D the green vegetated areas are the vegetated haggs and the grey, watery areas are the peat pans.     948 

949 
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 950 
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60 
 

Figure 2 Schematic equipment layout.  Perspex net ecosystem exchange collar (NEE) co-located with dipwell 952 

(DW) in both the vegetated haggs and peat pans.  In the vegetated haggs polyvinyl chloride collars were also 953 

located measuring total (T) and heterotrophic (H) below ground respiration.    954 
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Figure 3 Water table depth (cm below ground level) in the peat pans (top) and vegetated haggs (bottom) over the 956 

2013 and 2014 growing seasons the six replicate plots within the study site (Figure 1D)   957 

  958 
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Figure 4 Comparison of vegetation composition indices between the vegetated haggs (VH) (n=6) and the peat 959 

pans (PP) (n=6).  Error bars reach the maximum and minimum recorded values.  The vertical box extends from the 960 

25th to the 75th percentile with a horizontal line at the 50th percentile.  961 
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Figure 5 Seasonal variation in ecosystem respiration and photosynthesis and net ecosystem exchange at 963 

1000 μmol Photons m-2 s-1 in the vegetated haggs (a & b) and peat pans (c & d) (μmol m-2 s-1), error bars are 1 964 

standard error, n=6. 965 

966 
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Figure 6 Seasonal variation in mean total and heterotrophic soil respiration rates (n=6) (μmol m-2 s-1).  Error bars 969 

are 1 standard error.           970 
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Figure 7 Temporal relationship between soil temperature (°C) at a depth of 5 cm (a, b & c) or water table depth (cm 972 

below ground surface) (d, e & f) and total (a & d), heterotrophic (b & e) and autotrophic (c & f) below-ground 973 

respiration from the vegetated haggs (n=6).  p<0.001.  974 
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Supplementary Material Table 1 Percentage cover of species observed at sites (1-6) in vegetated haggs and peat 978 

pans 979 

 Vegetated Haggs Peat Pan 

Species 1 2 3 4 5 6 1 2 3 4 5 6 

Calluna vulgaris 1 5 3 5                 

Drosera rotundifolia   1                     

Erica tetralix 4 7 20 15 8 3             

Narthecium ossifragum           50             

Polygala serpyllifolia 1     4 1               

Molinia caerulea 30 40 50 20 35 8             

Trichophorum cespitosum 30     4                 

Eriophorum angustifolium   5 1 8 2 2 3 3 4 5   8 

Campylopus introflexus 1 1                     

Hypnum cupressiforme 30 1   18 2               

Racometrium langinosum     2                   
Sphagnum 
capillifolium/rubellum   20                     

Sphagnum denticulatum                   30 95 20 

Bare Ground 8  20  40  30  35  40  97 47         

Standing Water               50 96 65 5 72 
 980 

  981 
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Supplementary Material Figure 1 Modelled net ecosystem exchange (CO2 μmolm-2s-1) against measured net 982 

ecosystem exchange (CO2 μmolm-2s-1) and model residuals (CO2 μmolm-2s-1) against modelled net ecosystem 983 

exchange (CO2 μmolm-2s-1) for the vegetated haggs and peat pans. 984 
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