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Abstract. Several surfactant molecules self-assemble in solution to form long, cylindrical,
flexible wormlike micelles. These micelles can be entangled with each other leading to viscoelastic
phases. The rheological properties of such phases are very interesting and have been the subject of a
large number of experimental and theoretical studies in recent years. We shall report our recent
work on the macrorheology, microrheology and nonlinear flow behaviour of dilute aqueous
solutions of a surfactant CTAT (Cetyltrimethylammonium Tosilate). This system forms elongated
micelles and exhibits strong viscoelasticity at low concentrations (� 0.9 wt%) without the addition
of electrolytes. Microrheology measurements of G�!� have been done using diffusing wave
spectroscopy which will be compared with the conventional frequency sweep measurements done
using a cone and plate rheometer. The second part of the paper deals with the nonlinear rheology
where the measured shear stress � is a nonmonotonic function of the shear rate _. In stress-
controlled experiments, the shear stress shows a plateau for _ larger than some critical strain rate,
similar to the earlier reports on CPyCl/NaSal system. Cates et al have proposed that the plateau is a
signature of mechanical instability in the form of shear bands. We have carried out extensive
experiments under controlled strain rate conditions, to study the time-dependence of shear stress.
The measured time series of shear stress has been analysed in terms of correlation integral and
Lyapunov exponent to show unambiguously that the behaviour is typical of low dimensional
dynamical systems.
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1. Introduction

Rheology is the study of the deformation and flow of matter. Solids and fluids exhibit

different flow behaviours under shear. Solids store mechanical energy and are elastic,

whereas fluids dissipate energy and are viscous. Complex fluids (e.g. colloids, polymers),

owing to their larger length scales which result in low mechanical susceptibilities

(� 102 Pa as compared to� 1012 Pa in atomic systems), show very complex flow behaviour

and are viscoelastic. The relative proportion of elastic and viscous responses depends on

the frequency of the applied stress. For example, for entangled polymer solutions, the

stress relaxation predominantly occurs by reptation dynamics with time scales �rep. This

system will be more elastic for ! > �ÿ1
rep whereas it will be more viscous for ! < �ÿ1

rep . One

should also note that for soft condensed matter, the elastic modulus under shear stress is

much smaller than the elastic modulus under compressive stress whereas these two moduli

are nearly equal for conventional atomic systems.

Experiments on the rheology of matter involve the measurement and prediction of its

flow behaviour. The method involves the application of a known strain or strain rate to a
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sample and the subsequent measurement of the stress induced in the sample or vice versa.

The response of a viscoelastic material to an applied stress may be characterized as linear

or nonlinear depending on the magnitude of the applied stress=strain rate.

1.1 Linear rheology

The response of a material is linear when very small stresses (i.e. small compared to the

spontaneous thermal fluctuations in the material) are applied. If a small step strain  is

applied to a deformable material at time t � t1, the stress induced in the material is given

by �xy�t� � G�t; t1��t� (figure 1), where G�t; t1� is the stress relaxation function. Here x

and y define the velocity and velocity gradient directions, respectively. To linear order in

, all other components of stress like �xx are zero. Invoking time-translational symmetry,

G depends on the time difference between t and t1 i.e. G�t; t1� � G�t ÿ t1�. Exceptions to

time-translational symmetry are found to occur in glassy systems which show aging

behaviour. For an arbitrarily small applied strain rate _�t�, the stress �xy�t� induced in the

material is defined as

�xy�t� �
Z t

ÿ1
G�t ÿ t0� _�t0�dt0; �1�

where G�t� is known as the memory kernel for shear response.

(a)

(b)

time

timet1

t1

γ

σ
xy

Figure 1. (a) shows step strain applied at time t1, with a magnitude small enough to
lie in the linear regime (b) shows the corresponding relaxation of stress.
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(a) Oscillatory flow: If a strain �t� � 0 ei!t is applied to the material, the stress

developed in the sample can be out of phase with the strain by a phase angle � (figure 2).

For a viscoelastic material, � lies between the limits � � 0 (for a Hookean solid) and

� � �=2 (for a Newtonian fluid). Using eq. (1), the resulting stress may be written as

�xy�t�� 0

Z t

ÿ1
G�t ÿ t0�i! ei!t0 dt0: �2�

Putting � � t ÿ t0, it can be written as �xy�t� � 0 ei!tG?�!�, G?�!�� G0�!� � iG00�!�, is

the complex shear modulus given by

G?�!� � i!

Z 1
0

G�t� eÿi!t dt: �3�

The real part of G?�!�, called the storage modulus and denoted by G0�!), gives the elastic

response of the material to the applied strain. It is the ratio of the stress in phase with the

applied strain to the strain. The viscous response, defined by the loss modulus G00�!�, is

the ratio of the out-of-phase stress component to the strain. Equation (3) implies that

G0�!� is an even function whereas G00�!� is an odd function of !.

(b) Steady shear: When _�t� � constant, the stress induced in the sample is given by

�xy � _
R t

ÿ1 G�t ÿ t0� dt0 � �0 _, where �0 is the zero shear viscosity given by �0 �R1
0

G�t� dt. A non-zero value of �0 implies the presence of liquid-like or glassy dynamics.

The simplest form of the response function G�t� is given by the Maxwell model,

namely, G�t�� G0 eÿt=�M , or G?�!��G0i!�M=�1� i!�M�, where G0 is the elastic modulus

and �M is the Maxwell relaxation time related to zero frequency shear viscosity �0�G0�M.

For a Newtonian fluid, G0ÿ!1; �Mÿ!0 such that �0 remains constant. More generally,

when there are many relaxation times present in the system, G�t� �Pj Gj eÿt=�j . For a

continuous distribution of relaxation times, specified in terms of P���,

G�t� � G0

Z 1
0

P��� eÿt=�d� � G0��t�: �4�

σ

γ

δ

Figure 2.  is the shear applied to a viscoelastic material. � is the resultant stress in
the material, delayed by a phase angle �. The complex shear modulus may be then
written as G?�!� � G0�!� � iG00�!�, where G0�!� is the in-phase elastic modulus and
G00�!� is the out-of-phase viscous modulus.
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For entangled polymer solutions, the stress relaxation occurs by reptation dynamics with

time scale �rep, for which

��t� �
X
n odd

8

n2�2
e
�ÿn2 t
�rep
�
:

In a linear creep experiment, a step response is applied (�xy � 0 for t � 0 and �xy � �0

for t > 0) and strain �t� is measured, which is a solution of

�0 �
Z t

0

G�t ÿ t0� _�t0� dt0: �5�

The linear response of a viscoelastic material to an applied stress may be determined

by a conventional frequency sweep experiment done using a rotating disc or concentric

cylinders rheometer. The rheometer applies very small oscillatory stresses and calculates

the resultant strain in the sample over the desired frequency range. For an applied angular

frequency !, the response that is in phase with the applied stress is used to calculate the

storage modulus G0�!� while the out of phase component gives the loss modulus G00�!�.

1.2 Nonlinear rheology

Nonlinear rheology describes the response of a material to much larger stresses. As the

name suggests, the strain induced in a sample varies nonlinearly with the applied stress in

this regime. The nonlinear behaviour of a viscoelastic material in steady flow experiments

is characterized by shear thinning or thickening, the presence of non-zero yield stress and

normal stress differences, flow-induced phase transitions and the phenomenon of shear

banding [1±4] as shown schematically in figure 3. In nonlinear step strain experiments, if

a large enough step strain 0 is applied to a sample, then the stress induced in the sample

may be expressed by �xy�t� � 0Gnl�t ÿ t0; 0�. The normal stresses under these conditions

are no longer negligible and must be taken into consideration. For 0 ! 0, Gnl ! G�t� as

measured in linear rheology.

Systems of giant wormlike micelles formed in certain surfactant solutions are known to

show very unusual nonlinear rheology [1]. In steady shear, the shear stress saturates to a

constant value above a critical strain rate _ (as shown in figure 3d) while the first normal

stress difference increases roughly linearly with shear rate [2]. Such behaviour is a signature

of mechanical instability of the shear banding type [2, 5] and may be understood in terms

of the reptation-reaction model which involves the reversible breakage and recombination

of wormlike micelles along with repation dynamics known for polymer solutions. Alterna-

tively, the non-monotonicity of the flow curve has been attributed to the coexistence of two

thermodynamically stable phases (isotropic and nematic) in the sheared solution [6].

The flow curve may be measured under conditions of controlled stress or strain rate,

and depending on the time interval between the collection of data points, we can obtain

metastable or steady-state branches, respectively. In stress relaxation experiments, a

constant step strain rate is applied to the sample in the nonlinear regime, following which

the relaxation of stress in the sample is measured as a function of time. Alternatively,

stress relaxation may be studied after cessation of a controlled strain rate that had been

applied to the sample for a known duration.
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2. Our experiments on CTAT aqueous solutions

We have studied the linear and nonlinear rheology of dilute aqueous solutions of the

surfactant system CTAT (Cetyltrimethylammonium tosilate) at 25�C. Above concentra-

tions of 0.04 wt.% , and temperatures of 23�C [7], CTAT self-assembles to form

cylindrical worm-like micelles which get entangled at concentrations > 0.9 wt.%. The

lengths of these wormlike micelles depend on the concentrations of the surfactant and the

added salt, the temperature and the energy of scission of the micelle. The energy of

scission is the excess free energy of a pair of hemispherical end caps relative to the rod

like region containing an equivalent number of surfactant molecules. The number density

of the elongated micelles of length L is given by [7, 8]

C0�L� � 1

L2
exp ÿ L

Lavg

� �
; �6�

where L is expressed in monomer units and

L � �0:5exp
Escis

2kBT

� �
; �7�

where � is the surfactant volume fraction and Escis is the energy of scission of the micelle.

In these systems, stress relaxation occurs by reptation with time scale �rep (the curvilinear

shear
thickening

shear
thinning

(b)

(d)(c)

shear rate

σ

σ

γ

ση

xy

xy

0

.

(a)

Figure 3. (a) shows Newtonian (�xy � �0), shear thinning and shear thickening
behaviours seen in viscoelastic fluids. (b) shows the flow curve of a Herschel±Bulkley
plastic with a finite yield stress �0. At �xy < �0, the material behaves like a solid. At
�xy > �0, �xy � �0 � Kp _p, which reduces to the Bingham equation for p � 1. (c)
shows the flow curve of a system undergoing a flow-induced phase transition,
characterized by a sudden jump in � as shown by the dotted line. (d) shows a flow
curve showing a plateau region, which is a signature of shear banding.
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diffusion of the micelle through an imaginary tube segment) as for conventional polymers

and by the reversible scission (breakdown and recombination of micelles with time

scale �b) [2]. The time scales �rep and �b may or may not be comparable and depend on

the surfactant concentration, presence of counterions in the solution and temperature.

(a) Macrorheology measurements: The frequency response of a viscoelastic material may

be measured using a rheometer which consists of a device that can simultaneously apply a

torque and measure the resultant strain. The in-phase and out-of-phase responses of the

material to the torque are measured to calculate its elastic and viscous moduli,

respectively. The instrument used by us is Rheolyst AR-1000N (T.A. Instruments, U.K.)

stress controlled rheometer with temperature control and software for strain rate control

to measure the elastic and viscous responses of 1 wt.% CTAT between the angular

frequency range of 0.03 rad=sec and 10 rad=sec. The rheometer used was equipped with

four strain gauge transducers capable of measuring the normal force with an accuracy of

10ÿ4 N. The measurements were made using a cone-and-plate geometry of cone diameter

4 cm and angle 1�5900.
The linear regime of CTAT was first ascertained by looking for a range of stress values

where the magnitudes of the response functions were found to be independent of the

applied oscillatory stress. The elastic and viscous moduli and the viscosity of CTAT

1 wt.% at 25�C were found to be constant for stresses between 0.05 and 0.1 Pa, oscillating

at a frequency of 0.1 Hz. Hence for the linear response measurement, 0.08 Pa was chosen

as the amplitude of the oscillatory stress, oscillating between angular frequencies

0.03 rad/sec and 10 rad=sec. At frequencies higher than 10 rad=sec, the waveform

depicting the strain becomes distorted, possibly due to the slip between the sample and

the plates. This, therefore, limits the measurements till 10 rad=sec. Linear response

measurements (figure 4) show that at the lowest frequencies, CTAT behaves like a viscous

Figure 4. Measurement of the elastic modulus G0�!� and the viscous modulus
G00�!� of 1 wt.% CTAT by the method of macrorheology, using a cone and plate
rheometer, with applied stress � 0:08 Pa at 25�C.
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material, whereas in higher frequency runs, the behaviour is found to be predominantly

elastic. The crossover is found to occur at 0.45 rad/sec which corresponds to a relaxation

time �R of 2.2 seconds. Cates et al [8] have shown that for a system of wormlike micelles,

like CPyCl=NaCl, G0�!� and G00�!� are given by Maxwell model:

G0�!� � G0!
2�R

2=�1� !2�R
2�;

G00�!� � G0!�R=�1� !2�R
2�;

where �R � ��b�rep�1=2
. Figure 5a and b show the least square fits of the data to the

Maxwell model giving G0 � 2:1 Pa and �R � 2:2 sec. We find that for CTAT at concen-

tration 1 wt.%, the fit is very poor. Further, the Cole±Cole plot (figure 5c) corresponding to

the above data shows a deviation from the semi-circular behaviour expected in Maxwellian

systems and shows an upturn at high frequencies. This deviation from Maxwellian

behaviour is possibly due to the comparable values of �rep and �b in this system unlike in

other wormlike micellar systems where the differences in the time scales ��b � �rep�, lead

to a 'motional averaging' effect. We have tried the Doi-Edwards model where [9]

G0�!� � G0

X
p odd

�!�D=p�2=�1� �!�D=p�2�;

G00�!� � G0

X
p odd

�!�D=p�=�1� �!�D=p�2�:

Here also, the fit with p � 1 and 3 is poor as shown in figure 6. The Doi-Edwards model

gives G0 � 3 Pa and �D � 1 sec. We also find that the Hess model which is given by [9]

G0�!� � ���0 ÿ �1�=���!2��
2=�1� !2��

2�;
G00�!� � ���0 ÿ �1�=���!��=�1� !2��

2�

Figure 5. (a) G0�!� and (b) G00�!� of 1 wt.% CTAT using a rheometer (data same as
shown in figure 4). The solid lines show the least square fits to the Maxwell model.
(c) shows the Cole±Cole plot which deviates from the semicircle exhibited by
Maxwellian systems.
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does not fit our data over the entire frequency range. In this model, �1 is the high

frequency shear viscosity and �� is a characteristic relaxation time of the system. It is likely

that G0�!� and G00�!� can be fitted with a model calculated in low and high frequency

regions separately, as is usually done in polymer literature [10]. Linear response measure-

ments were also made for CTAT 1.9 wt.% and CTAT 5 wt.%. Interestingly, CTAT 1.9 wt.%

shows an anomalously large relaxation time, whereas CTAT 5 wt.% is found to exhibit

Maxwellian behaviour, as also seen in recent studies [9].

(b) Microrheology measurements: In recent years, micro-rheological techniques have

been developed in addition to macroscopic rheometry measurements using rotating disc or

concentric cylinder rheometer. The basic idea behind microrheology is the tracking or

manipulation of sub-micrometer particles immersed in the viscoelastic medium to be

studied. Using magnetic beads as the probe particles, which can be manipulated by magnetic

field gradients, the viscoelastic properties of F-actin networks [11] and the vitreous body of

the eye [12] have been measured. It is also possible to do microrheological measurements

by a quantitative measurement of the mean square displacement h�r2�t�i of the probe

particles caused due to thermal fluctuations. This can be done either using laser interfero-

metry with a resolution less than 1 nm [13, 14] or by diffusing wave spectroscopy [15].

The motion of the probe particle of radius a may be described by a generalized

Langevin equation given by

m _v�t� � fR�t� ÿ
Z 1

0

��t ÿ ��v��� d�; �8�

where m _v�t� is the inertia of the particle, fR�t� is the contribution due to electrostatic and

Brownian forces on the particle. � defines a time-dependent memory function which

contributes to the viscous damping of the particle in the viscoelastic medium. The memory

Figure 6. Data same as in figure 4 and the corresponding fits to the Doi±Edwards
model shown by solid lines.

A K Sood, Ranjini Bandyopadhyay and Geetha Basappa

230 Pramana ± J. Phys., Vol. 53, No. 1, July 1999



function ��t� and fR�t� are related by the following temporal autocorrelation function:

h fR�0� fR�t�i � kBT��t�; �9�
where kB is the Boltzmann's constant and T is the temperature.

In the frequency domain, the viscosity of the medium may be related to the frequency

dependent memory function by the generalized Stokes±Einstein relation

e��s� � e��s�
6�a

; �10�

where s is the complex frequency given by s � i!. The complex viscoelastic modulus is

given by [15]

eG�s� � se��s� � s

6�a

6kBT

s2h�r2�s�i ÿ ms

� �
: �11�

The last term on the right hand side of eq. (11) is the contribution due to the inertia of the

particle and can be omitted except at very high frequencies. h�r2�t�i of the probe particle

is obtained from the intensity autocorrelation function which can be measured in diffusing

wave spectroscopy experiments in the transmission or backscattering geometries. The

Laplace transform of h�r2�t�i is used to calculate eG�s� using eq. (11). eG�s� is then fitted to

a functional form in s, which may then be used to calculate G?�!�, using the method of

analytic continuation.

We have used microrheology to estimate the G0�!� and G00�!� of an aqueous solution of

CTAT of weight fraction 1%. The probe particles used are polystyrene colloidal particles

of diameter 0.23mm dispersed in water at � � 1%. Diffusing wave spectroscopy was

performed on the equilibrated sample using our light scattering setup consisting of a Kr�

ion laser (model 2020, Spectra Physics, U.S.A., excitation wavelength used 647.1 nm), a

homemade spectrometer, photomultiplier tube (model R943-02, Hamamatsu, Japan),

single photon amplifier discriminator (SPEX) and a MALVERN 7132 CE 64 channel

correlator (figure 7). The light scattered Is�t� by the probe particles in the backscattering

direction at a temperature of 25�C is used to measure the normalized intensity auto-

correlation function g2�t��hIs�0�Is�t�i=hIs�0�i2, as shown in figure 8a. For backscattering

geometry, g2�t�� eÿÿ�k2h�r2�t�i�1=2

[16], which is used to get h�r2�t�i as shown in figure 8b,

Krypton Ion Laser M1

M2

P1L1SP2
P.H.L2

Fiber

H.V.Supply

P.M.T. P.A.D. Inv
Digital
Corr

P.C.

Figure 7. Our light scattering setup in the transmission geometry : P1 and P2 are the
analyser and polariser respectively, L1 and L2 are convex lenses of f � 20 and 30 mm
respectively, P.H. is a pin hole, S the sample that scatters light and Inv is an inverter
circuit. M1 and M2 are plane mirrors that steer the incident laser beam.
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using ÿ � 2. The parameter ÿ is a constant depending on the polarization of the scattered

light and varies inversely with the transport mean free path l? of the diffusing photon.

Figure 8c shows G�s� calculated using eq. (11), which was fitted to G�s�� p0� p1sÿ0:55�
p2s0:3 � p3s0:5 � p4s [15]. Putting s � i!, G0�!� and G00�!� of the dispersing gel are

calculated as shown in figure 8d. Comparison of figures 4 and 8d shows similar magni-

tudes of the viscoelastic response functions obtained by macrorheology and micro-

rheology methods. Further, in figure 8d, the crossover of the viscous and elastic moduli

occur at !co � 0:4 rad=sec, indicating a relaxation time �R � 2:5 seconds for 1% CTAT at

25�C, similar to macrorheology measurements. It may be noted that microrheology may

be used to calculate the frequency response of CTAT to much higher frequencies than the

conventional rheometer experiment.

3. Nonlinear rheology of CTAT

To study the nonlinear rheology of CTAT, we have measured the flow curve of CTAT

1.35 wt.% at 25�C as shown in figure 9. The measurements are done under conditions of

controlled stress. The data points are collected at intervals of 1 second, a value com-

parable to the relaxation time of the sample. The resultant branch of the measured flow

curve is metastable, and its existence was demonstrated by Grand et al [5]. The flow

curve is found to saturate to a constant stress value above a critical shear rate _c, while the

first normal stress difference is found to increase linearly with shear rate. The plateau of

the shear stress at high shear rates in CPyCl=NaSal has been interpreted by Grand et al

[5] as a characteristic feature of the flow curves of complex fluids that gives rise to a

mechanical instability of the nature of shear banding [2]. Shear banding results in the

formation of bands of high and low viscosities in the sample, supporting low and high
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Figure 8. The microrheology results: (a) shows the correlation function in the
backscattering direction, (b) the h�r2�t�i, (c) the complex modulus G�s� and (d)
shows the calculated values of G0�!� and G00�!�.
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shear rates, respectively. However, the same phenomenon observed in CTAB=NaSal at a

higher concentration has been explained by Berret et al [3] as due to the coexistence of

isotropic and nematic phases in the sheared sample.

In addition to the measurement of the flow curve for our system, we have studied the

stress relaxation in the sample after subjecting it to a step strain rate. At 25�C, on applying

controlled shear rates whose values lie in the plateau region of the flow curve, the stress,

instead of decaying to a steady state, is found to oscillate in time. Figure 10 shows the time

dependent stress relaxation in the 1.35 wt.% CTAT sample at 25�C, on subjecting the

sample to a step strain rate of 100 sÿ1. The Fourier spectra of these time-dependent signals

0 50 100 150
0

1

2

3

4

γ (s−1)

σ 
(P

a)

.

Figure 9. The metastable branch of the flow curve of 1.35 wt.% CTAT, measured
under conditions of controlled stress.

500 1000 1500 2000 2500
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1.8

2

2.2
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Figure 10. The time-dependent relaxation of stress in 1.35 wt.% CTAT, on
subjecting the sample to a constant step-strain rate of 100 sÿ1.
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show time scales of the order of a few tens of seconds, which are an order of magnitude

larger than �R.

We identify the observed time-dependent behaviour as a manifestation of the mechanical

instability due to the formation of shear bands [2, 5]. Preliminary analysis of the time

series obtained from the stress relaxation experiments done in the nonlinear regime shows

the existence of positive Lyapunov exponents [17] and finite correlation dimensions [18]

(> 2 at shear rates > 75 sÿ1), which points to the existence of deterministic chaos in

sheared aqueous solutions of CTAT. The Lyapunov exponent characterizes the divergence

of stress trajectories in the system, whereas the correlation dimension gives us information

about the geometry of the attractor on which the trajectories in phase space asymptotically

lie. On increasing the temperature of the sample to 35�C, and on maintaining the same

shear rates as in the previous experiments done at 25�C, the time dependent oscillations in

the stress relaxation are found to disappear completely. This is in accordance with previous

studies on the temperature dependence of the flow curve of CPyCl=NaSal [3] which shows

a decrease in the width of the plateau with increasing temperature. The disappearance of

the time-dependent behaviour in sheared CTAT at higher temperatures is thus a direct

consequence of the disappearance of the shear bands in the sample [3]. We have done

extensive studies on the time-dependence of the stress relaxation of dilute, aqueous,

sheared solutions of CTAT by doing more elaborate analysis of the time-series obtained

from our experiments [19].
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