187 research outputs found

    Disruption of the Mammalian Ccr4–Not Complex Contributes to Transcription-Mediated Genome Instability

    Get PDF
    The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4–Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4–Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S

    Recombinant myelin oligodendrocyte glycoprotein quality modifies evolution of experimental autoimmune encephalitis in macaques

    Get PDF
    The authors describe quantitatively and qualitatively different forms of experimental autoimmune encephalitis (EAE) in cynomolgus macaques. They found that bacterial contaminants within recombinant human myelin oligodendrocyte glycoprotein seemed to aggravate disease evolution. They provide anatomopathological features of fulminant and progressive forms of EAE, allowing them to distinguish specific factors influencing the evolution of this model of autoimmune demyelinating disease. Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E. coli), purified and formulated with incomplete Freund's adjuvant (IFA), which lacks bacterial elements. Here, we provide evidence indicating how trace amounts of bacterial contaminants within rhMOG may influence the course and severity of EAE in the cynomolgus macaque immunized with rhMOG/IFA. The residual amount of E. coli contaminants, as detected with mass spectrometry within rhMOG protein stocks, were found to significantly modulate the severity of clinical, radiological, and histologic hallmarks of EAE in macaques. Indeed, animals receiving the purest rhMOG showed milder disease severity, increased numbers of remissions, and reduced brain damage. Histologically, these animals presented a wider diversity of lesion types, including changes in normal-appearing white matter and prephagocytic lesions. Non-human primates EAE model with milder histologic lesions reflect more accurately ADD and permits to study of the pathogenesis of disease initiation and progression

    Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    Get PDF
    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes

    The Gene Expression Analysis of Blood Reveals S100A11 and AQP9 as Potential Biomarkers of Infective Endocarditis

    Get PDF
    BACKGROUND: The diagnostic and prognostic assessments of infective endocarditis (IE) are challenging. To investigate the host response during IE and to identify potential biomarkers, we determined the circulating gene expression profile using whole genome microarray analysis. METHODS AND RESULTS: A transcriptomic case-control study was performed on blood samples from patients with native valve IE (n = 39), excluded IE after an initial suspicion (n = 10) at patient's admission, and age-matched healthy controls (n = 10). Whole genome microarray analysis showed that patients with IE exhibited a specific transcriptional program with a predominance of gene categories associated with cell activation as well as innate immune and inflammatory responses. Quantitative real-time RT-PCR performed on a selection of highly modulated genes showed that the expression of the gene encoding S100 calcium binding protein A11 (S100A11) was significantly increased in patients with IE in comparison with controls (P<0.001) and patients with excluded IE (P<0.05). Interestingly, the upregulated expression of the S100A11 gene was more pronounced in staphylococcal IE than in streptococcal IE (P<0.01). These results were confirmed by serum concentrations of the S100A11 protein. Finally, we showed that in patients with IE, the upregulation of the aquaporin-9 gene (AQP9) was significantly associated with the occurrence of acute heart failure (P = 0.02). CONCLUSIONS: Using transcriptional signatures of blood samples, we identified S100A11 as a potential diagnostic marker of IE, and AQP9 as a potential prognostic factor

    A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging

    No full text
    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy

    Dynamics of Envelope Evolution in Clade C SHIV-Infected Pig-Tailed Macaques during Disease Progression Analyzed by Ultra-Deep Pyrosequencing

    Get PDF
    Understanding the evolution of the human immunodeficiency virus type 1 (HIV-1) envelope during disease progression can provide tremendous insights for vaccine development, and simian-human immunodeficiency virus (SHIV) infection of non-human primate provides an ideal platform for such studies. A newly developed clade C SHIV, SHIV-1157ipd3N4, which was able to infect rhesus macaques, closely resembled primary HIV-1 in transmission and pathogenesis, was used to infect several pig-tailed macaques. One of the infected animals subsequently progressed to AIDS, whereas one remained a non-progressor. The viral envelope evolution in the infected animals during disease progression was analyzed by a bioinformatics approach using ultra-deep pyrosequencing. Our results showed substantial envelope variations emerging in the progressor animal after the onset of AIDS. These envelope variations impacted the length of the variable loops and charges of different envelope regions. Additionally, multiple mutations were located at the CD4 and CCR5 binding sites, potentially affecting receptor binding affinity, viral fitness and they might be selected at late stages of disease. More importantly, these envelope mutations are not random since they had repeatedly been observed in a rhesus macaque and a human infant infected by either SHIV or HIV-1, respectively, carrying the parental envelope of the infectious molecular clone SHIV-1157ipd3N4. Moreover, similar mutations were also observed from other studies on different clades of envelopes regardless of the host species. These recurring mutations in different envelopes suggest that there may be a common evolutionary pattern and selection pathway for the HIV-1 envelope during disease progression
    corecore