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Abstract

The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus 
is also responsible for post-COVID-19 condition (commonly referred to as ‘long COVID’). SARS-CoV-2 is a single-stranded, 
positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect mul-
tiple pathways in infected cells, resulting, in many cases, in the induction of a ‘cytokine storm’ and cellular senescence. Perhaps 
because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage 
responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to 
cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review 
considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific 
components of DDR pathways. The significance of the virus’s ability to cause cellular senescence is also considered, as are the 
implications of genome instability for patients suffering from long COVID.

INTRODUCTION
By mid-October 2023 over three-quarters of a billion cases of coronavirus disease 2019 (COVID-19) had been reported, with 
almost seven million deaths, worldwide [WHO Coronavirus (COVID-19) Dashboard]. Approximately half of COVID-19 
survivors, regardless of hospitalization status, still experience a range of symptoms after 4 to 6 months, which has been termed 
‘long COVID’ [1–7]. Prolonged symptoms include immune dysregulation, vascular and circulatory problems, respiratory and 
gastrointestinal system problems, neurological problems and general fatigue, with symptoms resembling myalgic encephalao-
myelitis/chronic fatigue syndrome (ME/CFS) (reviewed, for example, in [7]). COVID-19 is caused by infection with severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) [8–10]. SARS-CoV-2, like other coronaviruses, is a member of the order 
Nidovirales and the family Coronaviridae. It is closely related to other betacoronaviruses – severe acute respiratory syndrome 
coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with approximately 79 and 50% 
homology, respectively, at the nucleotide level [8, 11].

SARS-CoV-2 has a single-stranded, positive-sense RNA genome of approximately 30 kb. Following infection, two open reading 
frames, ORF1a and ORF1b, encompassing approximately two-thirds of the viral genome at the 5′ end, are translated into two 
polyproteins (pp1a and pp1ab), while four structural proteins (spike, envelope, membrane and nucleocapsid; S, E, M, N, respec-
tively) and a number of accessory proteins (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b and ORF14) are encoded 
by the 3′ third of the genome [12–17]. The polyproteins are cleaved by viral proteases, encoded by Nsp3 and Nsp5, to give 16 
non-structural proteins (Nsp1–16) [18–21].

Infection with SARS-CoV-2 leads to dysregulation of many pathways in the host cell, most notably those involved with the 
immune response and inflammation, oxidative stress, RNA metabolism, homeostasis, cell cycle regulation, senescence, autophagy 
and apoptosis. Up to now, relatively little attention had been paid to the relationship between the virus and genome stability and 
the DNA damage response (DDR). However, it is now becoming clear that SARS-CoV-2 causes damage to the host cell DNA 
and has a complex interaction with the cellular DDR. In this review I have attempted to summarize published data relevant to 
this relationship and have gone on to consider what the implications might be for patients suffering from long COVID. Because 
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almost all the information discussed here has been published recently, and may be preliminary in a few instances, in some cases 
there are inconsistencies and divergent views, which will need further evaluation for verification in future; however, it is hoped 
that the case has been made that the DDR is an important target for SARS-CoV-2.

VIRUSES AND THE DNA DAMAGE RESPONSE
The cellular DDR comprises a series of complex, sometimes overlapping, pathways that can detect and repair different forms of 
damage to the cellular genome. At least seven pathways can be distinguished. For example, double-strand breaks (DSBs), arising 
as a result of exogenous or endogenous factors, are repaired either by non-homologous end joining (NHEJ) or homologous 
recombination (HR) [22–28]. HR is an error-free repair mechanism, occurring during the S and G2 phases of the cell cycle, 
which relies on the presence of the sister chromatid as a repair template. NHEJ occurs throughout the cell cycle and may, very 
rarely, introduce errors into the repaired DNA. Mismatch repair (MMR) is primarily for the repair of base–base mismatches 
and insertion/deletion mispairs generated during DNA replication and recombination [29–32]. The base excision repair (BER) 
pathway repairs most endogenous base lesions and abnormal bases in the genome and is also involved in repair of DNA single-
strand breaks [33, 34]. Nucleotide excision repair (NER) is the main pathway used by mammals to remove bulky DNA adducts, 
which disrupt the structure of the DNA double helix, such as those formed by UV radiation [35, 36]. Inter-strand crosslink repair 
(ICL) fixes crosslinks formed between the two DNA strands. Inter-strand crosslinks are repaired by the Fanconi anaemia (FA) 
pathway, whereas intra-strand crosslinks are repaired by the NER pathway [37–39]. There is also a direct repair pathway that is 
dependent on the ability of O6-methylguanine-DNA methyltransferase (MGMT) to remove alkyl groups from the O6 position 
on guanine [40, 41]. These pathways, in the context of viral infection, have been described in more detail in several reviews over 
the past decade (for example [42–44]).

All DNA viruses seem to impinge on one or more of these repair pathways during infection, either activating or antagonizing 
them [42, 45–48]. Initial infection by DNA viruses generally results in activation of phosphatidylinositol 3-kinase-related kinases 
(PIKKs), resulting in phosphorylation of downstream targets such as γH2AX and the Chk1 and Chk2 kinases. This activation 
may be due to the presence of viral DNA and/or expression of viral proteins that affect host cell processes such as transcription 
[47, 48]. The viruses then go on to utilize or inactivate, depending on the virus in question, differing components of the repair 
pathways to facilitate viral replication. Thus, for example, some viruses, such as adenovirus (HAdV) and herpes simplex virus 
1 (HSV1), inactivate double-strand break repair by targeted degradation of MRE11, BLM and DNA Ligase IV (by HAdVs, 
depending on the type) or RNF8 and DNA-PKcs, (by HSV1) [49–52]. On the other hand, most gammaherpesviruses require 
ATM for lytic replication [53–57], as do polyoma viruses [58, 59]. Regardless of whether a DNA virus activates or antagonizes 
the DDR they all recruit damage response proteins to their viral replication centres (VRCs) (see, for example, [55, 60–65]). It 
is assumed that their function there is to facilitate the production and integrity of viral DNA, although direct evidence for this 
is limited.

Our knowledge of the relationship of RNA viruses to the DDR pathways is much more limited (reviewed in [43]). The mode of 
replication of RNA viruses is governed largely by the configuration of their genomes. Coronaviruses, such as SARS-CoV-2, have 
a positive-sense, single-stranded genome that serves as mRNA and is translated in the cytoplasm largely into a polyprotein before 
its cleavage, giving rise to the replicase–transcriptase complex. This complex synthesizes a negative-strand RNA that acts as a 
template for transcription of genomic RNA and multiple subgenomic mRNAs in the infected cell. Membrane-associated VRCs, 
forming in the cytoplasm and containing viral proteins, are sites for the production of new viral RNA [66, 67]. (For a detailed 
description of the replication of RNA viruses in general see, for example, various chapters in [68]).

As most RNA viruses largely replicate in the cytoplasm, it might be expected that they have relatively little interaction with the 
cellular DDR. However, this is not the case and representative viruses from many families have been shown to cause genome 
instability and activation of DDR pathways (reviewed in [43]). For example, Chikungunya and Sindbis viruses – members of 
the family Togaviridae that, like SARS-CoV-2 and other coronaviruses, replicate in the cytoplasm – activate ATR and PARP1 
pathways following infection [69, 70]. Other RNA viruses, such as human immunodeficiency virus-1 (HIV-1) (a member of the 
family Retroviridae) and influenza A virus (IAV) (a member of the family Orthomyxoviridae), replicate partially in the nucleus 
and so might be expected to be more likely to cause DNA damage. HIV-1 causes double-strand breaks as a result of binding of its 
VPR protein to chromatin [71]. Vpr expression also activates ATM and leads to the formation of repair foci [72]. IAV infection 
leads to DNA damage and formation of γH2AX repair foci [73, 74]. Thus, it appears that the conformation of the viral genome, 
positive or negative strand, or even location of replication, has little influence over whether an RNA virus species impacts on the 
host cell DDR. The explosion of scientific interest in coronaviruses, and SARS-CoV-2 in particular, triggered by the COVID-19 
pandemic, has meant that our understanding of the relationship of this RNA virus to the DDR has increased appreciably. In this 
review I discuss these latest observations on the mechanisms by which SARS-CoV-2 can induce DNA damage and activate or 
inhibit DNA repair pathways. I also consider the implications of this for the long Covid syndrome. Previous reviews have also 
examined the relationship between SARS-CoV-2 and the DDR [75, 76]. In the latter case, emphasis has been placed on the host 
immune system.
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SARS-COV-2
SARS-CoV-2, like SARS-CoV, gains entry to the host cell through association with cellular attachment factors, such as glycans 
and integrins, and binding of the spike (S) glycoprotein to angiotensin-converting enzyme 2 (ACE2) [77–81]. S is cleaved to give 
the functionally distinct S1 and S2 subunits by a cellular protease [79, 82]. The incorporation of the basic cleavage site (PRRAR) 
at the S1/S2 boundary facilitates the cleavage reaction, resulting in enhanced infection [82]. An additional cleavage site is present 
in S2 [79]. S1 contains the receptor-binding domain, whereas the S2 transmembrane domain mediates fusion of the viral and 
cellular membranes, leading to syncytial formation. Cleavage of the S protein, predominantly by transmembrane protease serine 
2 (TMPRSS2), is necessary for fusion and the viral entry to occur [79, 81, 82].

The viral genomic RNA is then released into the host cell cytoplasm, initiating viral gene expression (reviewed, for example, in 
[12]). Initially, the SARS-CoV-2 genome is copied to produce a full-length negative version that is a template for the production 
of new positive-sense genomic RNA, which can be translated into proteins or used as genomes in progeny viruses. As with other 
members of the order Nidovirales, transcription is discontinuous, such that a set of 3′ to 5′ co-terminal sub-genomic RNAs are 
produced. These are used to synthesize negative-strand RNAs, which are then used as templates to synthesize positive-sense 
mRNAs, which, in turn, are translated to give structural and accessory proteins [12, 83–86].

As mentioned above, ORF1a and ORF1b are translated from the genome, giving rise to the polyproteins pp1a and pp1ab [83, 84]. 
Cleavage of these by viral cysteine proteases, located in Nsp3 and Nsp5, produces Nsps 1–11 from pp1a and Nsps 12–16 from 
pp1ab [12–14, 87–89]. Rapid proteolytic release of Nsp1 leads to inhibition of translation of certain host cell proteins [90–92]. 
Nsps 2–16 form the viral replication/transcription complex (RTC), with Nsps 12–16 providing the enzymes necessary for RNA 
synthesis, modification and proofreading. The remaining Nsps (2–11) appear to play slightly subsidiary roles, supporting replica-
tion (reviewed in [12, 93, 94]). Nsp 12 is the RNA-dependent RNA polymerase (RdRP), and Np7 and Nsp 8 act as co-factors 
[95, 96]. Nsp7 and Nsp 8 have been suggested to possess primase activity [97]. Nsp14 has proofreading capability and has both 
3′−5′ exonuclease and guanine N7 methyltransferase activity [98–100]. The N7 methyltransferase activity is required for 5′ 
capping of viral RNAs, which protects them from host anti-viral defences [95–98]. Nsp10 associates with Nsp14 and enhances 
its exonuclease activity [98–100]. Nsp13 is an RNA helicase and is essential for transcription and translation [101, 102]. Nsp16 
is a 2′-O-methyltransferase, whilst Nsp15 has endoribonuclease activity [103–106] (these and other functions, with additional 
relevant references, are summarized in Table 1).

The SARS-CoV-2 membrane protein (M) is the most abundant structural protein and is important for virus assembly and 
determining virus morphology and membrane budding [107–111]. M protein localizes in the endoplasmic reticulum Golgi 
intermediate compartment (ERGIC) and is essential for the recruitment of other viral proteins (see Table 1 for a summary of the 
subcellular distribution of SARS-CoV-2 proteins). It binds to the nucleocapsid (N) protein and together they can form virus-like 
particles [107]. Although N protein has a structural function, it is also essential for transcription and replication [112]. Through 
binding to the viral RNA genome, it is involved in the creation of the ribonucleoprotein complexes that regulate replication and 
viral RNA synthesis. Binding of viral RNA to N protein causes liquid–liquid phase separation; this enhances the interaction of 
RNA with the RdRP complex, favouring viral replication [112–116].

SARS-CoV-2 spike trimeric glycoprotein (S) is located on the surface of the viral membrane and is responsible for binding to 
the host cell ACE-2 receptor, as mentioned above [79–82, 117–119]. The envelope (E) protein is an integral membrane protein 
of low molecular weight (75 aa in SARS-CoV-2) (reviewed in [120, 121]). It is present at low concentration in virus particles but 
is abundant in infected cells. E protein interacts with the membrane protein (M), helping to maintain the structure of the virus 
particle. E protein is present inside the virus envelope. In addition, it polymerizes to form a cation-selective ion channel (also 
termed a viroporin), which is localized in the Golgi, endoplasmic reticulum and ERGIC of the infected cell.

A further set of proteins is encoded on the SARS-CoV-2 genome. These are the accessory proteins, which do not appear to be essen-
tial for viral replication but are important for virus–host cell interactions associated with virulence (reviewed in [14, 93, 122–124]) 
(Table 1). The SARS-CoV-2 accessory proteins ORF6, ORF3b, ORF7a, ORF7b, ORF8, ORF9b and ORF10 are considered to be 
interferon (IFN) antagonists and play a role in SARS-CoV-2 pathogenesis (reviewed in [125–127]).

CELL CYCLE REGULATION BY SARS-COV-2
Following damage to their DNA, eukaryotic cells adopt a number of responses. These include co-ordination of cell cycle progres-
sion with DNA repair, as well as chromatin remodelling and transcriptional regulation or cell death. Arrest or delay of cell cycle 
progression provides time for DNA repair, and this is controlled by a network of signalling pathways that are able to initiate 
various cell cycle checkpoints (reviewed, for example, in [128, 129]). Simplistically, different checkpoints are activated, depending 
on where in the cell cycle damage occurs. For example, to prevent entry into S phase with damaged DNA, cells in G1 activate 
the checkpoint kinases ATM/ATR and Chk1/Chk2. Similarly, the G2/M checkpoint prevents segregation of chromosomes that 
have incurred unrepaired damage during G2. Depending on which checkpoint is activated or the type of DNA damage, different 
repair pathways will be activated.
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Table 1. SARS-CoV-2 proteins, summary of their subcellular localization and their function. A very brief description of the function is given, together 
with appropriate references

SARS-CoV-2 
protein

Tentative subcellular location Functions References

Nsp1 Cytoplasmic Induces host cell RNA cleavage, host shut off, inhibits 
host RNA translation and IFN response. Inhibits STAT1 

phosphorylation

[90–92, 253–255]

Nsp2 Cytoplasmic Impairs IFN production, represses mRNA translation [256, 257]

Nsp3 Cytoplasmic Protease activity (polyprotein processing). Involved in 
generation of DMVs with Nsp4. Interacts with N

[87, 258–260]

Nsp4 ER, cytoplasmic DMV formation with Nsp3 [260]

Nsp5 Cytoplasmic Protease activity – 3CLpro and Mpro (polyprotein processing). 
Counteracts RIG-I MAVS signalling and IFN signalling

[20, 21, 88, 89, 261]

Nsp6 Golgi, ER DMV formation. Replication organelle with Nsp3, Nsp4. ER 
membrane zippering

[260, 262]

Nsp7 Cytoplasmic Accessory protein for RNA polymerase. Inhibits IFN 
production by targeting RIG-I

[96, 263–265]

Nsp8 Cytoplasmic Primase. Accessory protein for RNA polymerase. Interacts 
with MDA-5

[96, 97, 263, 264, 266]

Nsp9 Cytoplasmic, nucleus RNA binding protein. Associates with Nsp12. Recruits protein 
for 5′ capping. Binds nuclear pore complex proteins

[267–269]

Nsp10 Cytoplasmic, present in vesicular 
structures

Co-factor for Nsp14 and Nsp16 methyl transferases. 
Component of exonuclease complex

[98, 99, 105, 270, 271]

Nsp11 Cytoplasmic Short peptide of unknown function [272]

Nsp12 Cytoplasmic, Golgi RNA-dependent RNA polymerase – associates with Nsp7 and 
Nsp8. Also complex with Nsp14 and Nsp16

[93, 94, 263, 264, 267, 273]

Nsp13 Cytoplasmic RNA helicase, 5′ triphosphatase. IFN antagonist [101, 102, 264, 274, 275]

Nsp14 Nucleus 3′−5′ exoribonuclease, N7-methyl transferase. Interacts with 
RdRP complex. IFN antagonist

[98, 99, 105, 274, 276, 277]

Nsp15 Diffuse; cytoplasmic, Golgi Endoribonuclease. IFN antagonist [103, 104, 274, 278]

Nsp16 Endosomes, cytoplasmic 2′-O-methyltransferase. Protects from MDA5 immune 
response

[105, 106, 279, 280]

Envelope protein (E) ER, Golgi Virion structure. Activates TLR2 pathway [120, 121, 281]

Membrane protein 
(M)

ER, Golgi, endosomal, cytoplasmic Virion structure. IFN antagonist. Binds PCNA and N protein [107–109]

Nucleocapsid (N) Diffuse cytoplasmic Houses viral genome, virus particle release. Counteracts RIG-I 
signalling

[107, 113–115, 282, 283]

Spike protein (S) ER, plasma membrane, cytoplasmic Viral entry, binds host cell receptor [77–82, 117, 118, 284, 285]

ORF3a ER, Golgi, endosomal Viroporin, also promotes virus release. Induces apoptosis. 
Suppresses INF signalling

[125, 126, 286–292]

ORF3b ER, Golgi, endosomal IFN antagonist [293]

ORF6 ER, nuclear membrane, Golgi, 
membrane vesicles, cytoplasm

IFN antagonist [109, 126, 294–296]

ORF7a ER, Golgi IFN antagonist, inhibits IRSE promoter activity [126, 287, 297–299]

ORF7b ER, Golgi, cytoplasmic IFN antagonist, inhibits IRSE promoter activity [126, 297]

ORF8 ER, Golgi, also secreted IFN antagonist. Interacts with MHC-I and mediates its 
degradation

[126, 288, 300–303]

Continued
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Most viruses take control of the cell cycle of the infected cell to produce an environment conducive to viral replication (reviewed, 
for example, in [130]). For example, adenoviruses cause progression into a ‘pseudo-S phase’ by the action of E1A proteins that 
bind RB family members, de-repressing E2F transcription factors, and activating genes required for cell cycling (reviewed in 
[131, 132]). Similarly, lytic replication of Epstein–Barr virus (EBV) and Kaposi's sarcoma-associated virus (KSHV) leads to S 
phase accumulation and activation of S phase-specific DNA repair pathways [133, 134]. RNA viruses are also well known to 
regulate the cell cycle following infection; for example, Rift Valley fever virus (RVFV), a negative-strand RNA virus of the family 
Bunyaviridae, encodes a non-structural (NS) protein that causes S phase arrest by activating the ATM-Chk2 pathway [135]. 
Several SARS-CoV-2 proteins are involved in the viral regulation of the cell cycle. As will be discussed in detail below, ORF6 
and Nsp13 separately cause downregulation of Chk1, leading to cell cycle arrest in S phase [136]. Similarly, SARS-CoV-2 Nsp12 
binds to the p50 component of DNA polymerase delta (pol δ) [137]. This interaction, together with a likely association between 
Nsp13 and the p125 subunit of DNA pol δ, plays a synergistic role in the induction of S phase arrest following co-expression 
of SARS-CoV-2 Nsp12 and Nsp13 [137]. It has previously been shown that infection of cells with the coronavirus infectious 
bronchitis virus (IBV) activates the S phase checkpoint and induces cell cycle arrest in S and G2/M phases, partially through 
the interaction of Nsp13 with the p125 catalytic subunit of pol δ [138]. Contrasting evidence, however, has indicated that the 
SARS-CoV-2 N protein can cause arrest of kidney cells in G1 by interaction with Smad3, enhancing TGF‐β/Smad3 signalling 
[139]. In further studies it was demonstrated that quercetin can block the interaction, which leads to an inhibition of Smad3 
signalling and p21- and p16-dependent G1 cell cycle arrest and cell death in vivo and in vitro [139, 140]. In studies of SARS-CoV-2, 
expression of N protein has been shown to cause a cell cycle block in G1/S [141], whereas the SARS-CoV protein blocks S phase 
progression [142]. In the latter report it was observed that decreased S phase gene expression and decreased phosphorylation of 
a CDK2 substrate occurred in SARS-CoV-infected cells, which is perhaps more physiologically relevant [142]. However, several 
other investigations have shown that SARS-CoV 3 a, 3b and 7 a proteins, as well as murine coronavirus infection, cause G0/G1 
arrest, and this is required for viral replication (reviewed in [143]).

In a large screen of protein phosphorylation following SARS-CoV-2 infection, kinases whose activity was predicted to be 
downregulated included several cell cycle kinases (CDK1/2/5 and AURKA) and cell growth-related signalling pathway kinases 
(PRKACA, AKT1/2, MAPK1/3 and PIM1) [144]. By comparison of public phosphoproteomics datasets, it was concluded that 
SARS-CoV-2 infection induced a cell cycle block at the S/G2 transition, with relatively few cells in G0, G1 or M [144]. Notably, 
the observed increase in activity of MAPKp38 is consistent with a cell cycle block [145]. Also, CDK2 T14/Y15 phosphorylation 
increased after SARS-CoV-2 infection; this is normally linked to inhibition of progression from G2 phase to M [144, 146, 147]. 
The presence of the infected cells in S/G2 suggests that any DSBs that occurred would be repaired by homologous recombination, 
and it is notable that this pathway is activated during SARS-CoV-2 infection [136].

In a wide-ranging survey of transcriptome data obtained following SARS-CoV-2, infection, it was noted that some cell cycle genes 
were upregulated. These included aurora kinase B (AURKB), p21 (CDKN1A) and cyclin B1 (CCNB1). A limited number of genes 
were downregulated, such as p57 (CDKN1C) [148]. Overall, it is difficult to reconcile all these results, but it seems reasonable to 
conclude that SARS-CoV-2 induces infected cells into S phase, facilitating replication.

Because of its multiple roles in cell cycle regulation, DDR, and the induction of apoptosis and autophagy, p53 is a common target 
for infecting DNA viruses such as adenovirus, human papilloma virus (HPV) and EBV (reviewed in [42, 46]). It can also be a 
target for RNA viruses; for example, p53 is mislocalized to the cytoplasm by the NS2 protein during hepatitis C virus (HCV) 
infection [149]. However, only limited information is available on the relationship between SARS-CoV-2 and p53 (reviewed 
in [150]). It has been shown that the viral protease Nsp5 can act as a repressor of the p53 signalling pathway and that p53 can 
restrict SARS-CoV-2 production [151]. However, these experiments were carried out in HEK293T cells, where p53 transcriptional 
activity is compromised. The N protein from another coronavirus [porcine epidemic diarrhoea virus (PEDV)] can induce cell 
cycle arrest in S phase by direct interaction with p53 in the nucleus [152]. This association has the effect of maintaining high 

SARS-CoV-2 
protein

Tentative subcellular location Functions References

ORF9b Diffuse, mitochondrial membrane Compromising the mitochondria, binds TOM70. Affects IFN 
synthesis. Antagonizes IFN signalling. Interacts with host cell 

organelles

[126, 304–309]

ORF9c Nuclear membrane, cytoplasmic Affects lipid remodelling and ER stress response. Interacts 
with host cell organelles

[126, 310]

ORF10 ER, Golgi, cytoplasmic Inhibits IFN signalling by inhibiting MAVS expression [126, 311]

DMV, Double membrane vesicle.; RdRP, RNA dependent RNA polymerase.

Table 1.  Continued
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levels of p53, activating the p53-DREAM pathway. Whether such an interaction occurs in SARS-CoV-2-infected cells has not yet 
been shown. A further relevant interaction has been reported for SARS-CoV Nsp3, which associates with, and stabilizes, RCHY1 
(ring finger and CHY zinc finger containing 1, also known as Pirh2) [153]. This has the effect of increasing RCHY1-mediated 
p53 degradation, presumably affecting cell cycle progression and the DDR [153]. RCHY1 also ubiquitylates the translesion DNA 
polymerase eta, inhibiting its DNA damage bypass activity, as well as several other significant substrates, such as Chk2, p73 and 
HDAC2 [154–157]. It has not been unequivocally demonstrated that SARS-CoV-2 Nsp3 binds RCHY1, but the interaction has 
been shown in a mass spectrometric screen [158] (see below).

SARS-COV-2 AND DDR
In general, the relationship between viruses and DNA damage and repair can be divided into two aspects. Firstly, damage inflicted 
on the host cell genome, either directly through viral proteins or indirectly, for example, through the generation of reactive oxygen 
species (ROS) or the generation of DNA replication stress. Secondly, by affecting host cell DNA damage repair pathways; this can 
also lead to increased DNA damage as repair to ‘normally occurring’ DNA lesions is compromised. It is clear that SARS-CoV-2 
has the potential to induce DNA damage, as evidenced by the presence of numerous micronuclei in syncytia formed in cells 
expressing S protein and ACE2, as well as activation of the cGAS–STING pathway [159]. Similarly, it has been observed that the 
DNA of COVID-19 patients shows increased damage compared to healthy controls, as determined by comet assay [136, 160]. 
Furthermore, in these studies there was a positive correlation between severity of disease, extent of damage and oxidative stress.

Host cell DNA damage resulting from SARS-CoV-2 infection
Oxidative stress arises as a result of differences between the rate of ROS production and accumulation and the concentration of 
cellular antioxidants. All coronaviruses affect the cellular redox machinery in favour of viral replication. This also has the effect 
of increasing inflammation, apoptosis and cellular damage in the host (reviewed in [161, 162]). This is particularly marked 
during SARS-CoV, MERS-CoV and SARS-CoV-2 infection. Redox mechanisms play a role in control of coronavirus entry into 
mammalian cells. The ACE2 receptor and its ligand have been shown to be important for the induction of redox stress. Ang II, 
the ACE2 ligand, activates NADPH oxidase, increasing ROS production [162]; this is offset by ACE2, which converts Ang II to 
angiotensin 1–7, causing a reduction in ROS [161, 162]. Infection of cells with coronaviruses leads to reduced levels of ACE2 
receptors and an increase in Ang II binding to ACE1, which causes an increase in ROS due to activation of NADPH oxidase 
[161, 162]. It has also been shown that S protein expression causes oxidative stress in endothelial cells, caused by activation of 
NOX2 [163]. Increased ROS and oxidative stress also increases the affinity of the spike protein for the human ACE2 receptor 
[164, 165].

Coronaviruses can induce production of mitochondrial ROS. The SARS-CoV Nsp3a protein activates the NLRP3 inflammasome, 
causing redistribution to the perinuclear space [166]. This activation is caused by increased mitochondrial ROS. Mitochondrial 
ROS regulates several pathways, which facilitate coronavirus replication in the cytoplasm. For example, it induces mitochondrial 
permeability transition pores, regulates endoplasmic reticulum stress and the unfolded protein response, and regulates mitophagy, 
which, in turn, contributes to coronavirus replication (reviewed in [161]). Most of these effects have been observed for SARS-CoV, 
but it seems reasonable to assume that similar effects would be observed with SARS-CoV-2.

SARS-CoV-2 can downregulate host cell antioxidant pathways, aiding replication. Specifically, it has been shown that NRF2-
induced genes, such as heme oxygenase 1 (HO-1) and NAD(P)H quinone oxydoreducatse 1 (NqO1), and superoxidase dismutase 
(SOD), are suppressed in SARS-CoV-2-infected cells and that the NRF2 pathway inhibits SARS-CoV-2 replication, in a way 
quite distinct from the host inflammatory response [161, 167]. The viral Nsp14 protein interacts with the catalytic domain of the 
NAD-dependent deacetylase sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway [168]. SARS-CoV-2 
also upregulates oxidative stress genes such as myeloperoxidase, calprotectin, sestrin, thioredoxin and sulfiredoxin-1 [169].

Oxidative stress induces multiple forms of DNA damage, such as single- and double-strand breaks, base and sugar oxidation 
products and DNA–protein crosslinks [170]. Oxidized guanine species (8-oxo-G) are usually formed by the interaction of ROS 
with the guanine base in nucleic acids and are taken as a measure of ROS activity. In a study to assess ROS in COVID-19 patients 
directly, 8-oxo-G levels were measured in cohorts of COVID-19 patients and non-infected healthy controls [171]. Increased levels 
of oxidized guanine were generally observed in COVID-19 patients with much higher levels in those with more severe disease. 
In a second study, perhaps surprisingly, similar levels of 8-oxo-G were observed in peripheral blood mononuclear cells (PBMCs) 
from healthy and SARS-CoV-2-infected individuals [172]. However, elevated levels of some, but not all, base excision repair 
proteins (for example, POLD1, MPG, ligase 1 and FEN1) and double-strand break repair proteins (for example, Chk1, RAD50 
and RAD51) were reported in COVID-19 patients [172]. In addition, it was noted that more highly regulated DDR pathway 
protein expression was correlated with severity of disease.

Another possible source of DNA damage in SARS-CoV-2-infected cells could be the interaction of Nsp13 with DNA polymerase 
δ. It has been shown that the IBV protein Nsp13, which only differs from the SARS-CoV-2 orthologue in a single amino acid, 
binds to DNA polymerase δ p125, causing DNA replication fork stress, ATR activation, cell cycle arrest and DNA damage [138]. 
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Inhibition of the ATR kinase by chemical inhibitors or siRNA-mediated knockdown reduced the IBV-induced ATR signalling 
and inhibited IBV replication [138]. It is likely that SARS-CoV-2 Nsp13 would have similar effects. Indeed, in further studies it 
has been shown that Nsp12 from IBV, SARS-CoV and SARS-CoV-2 interacts with the p50 regulatory subunit of pol δ [137]. This 
is considered to enhance the effect of Nsp13 in the induction of cell cycle arrest, as mentioned above [137].

It is also worth noting that the relatively high level of ROS could affect the viral genome as well (discussed in [173]). The effects 
of single amino acid substitutions in the SARS-CoV-2 S protein have been of great clinical significance during the COVID-19 
pandemic. It is possible that some of these mutations could have arisen because of host cell oxidative species.

SARS-CoV-2 and the DDR pathways
As mentioned above, probably all DNA viruses impinge on the cellular DDR [42, 44–46]. It is now becoming apparent that 
the same is the case for many RNA viruses [43]. SARS-CoV-2 falls into that category in that viral proteins have been shown to 
associate with components of the DDR pathways (reviewed in [75, 76, 174]) and the virus can affect various DDR pathways such 
as those based on ATR and ATM signalling [136, 175].

Association of SARS-CoV-2 proteins with DDR components
There have been several large-scale studies to identify the SARS-CoV-2 interactome, based on co-immunoprecipitation, yeast 
2 hybrid and biotin–streptavidin based-protocols (see, for example, [158, 176–184]); in some cases, published data have been 
consolidated into a resource summarizing reported interactions (for example, [185]). There are appreciable variations in the 
binding proteins reported in the different studies but similar major groups of proteins from specific cellular pathways have been 
identified as significant targets for the virus. For example, host factors involved in mRNA synthesis, nuclear export, translation 
and stability associating with the viral N protein have been reported [158, 176, 177, 180, 181]; similarly, proteins involved in 
membrane trafficking have been shown to bind to Nsp7 and M as well as other viral proteins [158, 176, 177, 179]. In most reports 
DNA repair and damage pathways have not been considered to be a major target for interaction with SARS-CoV-2 proteins. 
However, many well-characterized DDR components have been identified in association with SARS-CoV-2 proteins, although 
it is notable that there is very limited overlap between the different studies (summarized in Table 2).

In studies using the BioID interactome approach (which may have the disadvantage that it does not necessarily identify interacting 
proteins, but only those that are proximal), very large numbers of targets for each SARS-CoV-2 bait have been recorded and 
these include multiple DDR proteins, many associating with several SARS-CoV-2 proteins [158, 179]. For example, in the study 
by Samavarchi-Tehrani and colleagues, FANCI was considered to be present proximal to Nsps 1, 2, 5, 7,8, 9, 10, 13, 15 and 16, 
ORFs 3b, 6, 7b, 9b and 14 and the M and N proteins [179]. (Proteins identified in that study are not listed in Table 2 in order to 
keep it within manageable proportions.) This may be contrasted with other studies that identified FANCI interacting with Nsp3 
and 7, M protein and ORF7a [158, 181, 183]. This was also the case for BRCA1, BRCA2, ERCC5, ERCC6L, XRCC5 and XRCC6, 
where a large number of associated SARS-CoV-2 proteins were identified for each [179]. However, this may be contrasted with 
other DDR proteins that appeared to be proximal to far fewer associates. For FANCA, only Nsp7 and Nsp10 were identified; 
for FANCM Nsp7 and 9 and ORFs 6 and 14 were proximal, and ligase III was reported to be proximal to Nsps 1, 5, 6, 10 and 
15 and ORFs7b and 14 [179]. Just considering the studies summarized in Table 2, it is notable that very few of the interactors 
were identified in more than one study. For example, DNMT1 co-immunoprecipitates with SARS-CoV-2 ORF8 and yet was not 
reported as proximal to any SARS-CoV-2 protein in the studies by Laurent and colleagues and Samavarchi-Tehrani and colleagues 
[158, 176, 179]. Therefore, without further detailed mechanistic investigation it is difficult to know how much significance to 
give to these observations. For example, Laurent and colleagues and Samavarchi-Tehrani and colleagues each report interaction 
between Nsp7 and at least 10 DDR proteins, yet none of the other studies listed report any (Table 2). Furthermore, the BioID 
approach generates very large numbers of proximal targets, identified for each SARS-CoV-2 bait, sometimes exceeding a thousand 
[158, 179]. In that case it is not surprising that DDR proteins are included in potential binding partners.

In previous investigations it has been shown that the coronavirus infectious bronchitis virus induces cell cycle arrest by induction 
of an ATR-dependent DDR [138]. Additionally, the IBV Nsp13 interacts with DNA polymerase δ (POLD1), leading to DNA 
replication stress in IBV-infected cells [138]. Similarly, in a subsequent study it was shown that SARS-CoV-2 POLD1 probably 
associates with Nsp13 [137]. In the SARS-CoV-2 interactome screens summarized in Table 2, interaction of POLD1 has been 
reported for Nsp7 and Nsp10 but not for Nsp13 [158, 181]. However, in the BioID screen by Samavarchi-Tehrani and colleagues, 
POLD1 was found to be proximal to Nsps 5, 7, 8, 9, 10, 13, 15, and 16, as well as ORFs 3b, 6, 9b and 14 [179]. DNA polymerase 
δ is responsible for the 5′−3′ DNA polymerase and 3′−5′ exonuclease activity of polymerase δ. POLD1 has a role in several DNA 
repair pathways, such as mismatch repair (MMR), translesion synthesis (TLS), base excision repair (BER), nucleotide excision 
repair (NER) and double-strand break (DSB) repair [186].

Effects of SARS-CoV-2 on the cellular DDR
Obviously, further investigation is required before we can say that the reported interactions with cellular DDR components are 
biologically significant, either for the virus or the infected host cell. However, it is now clear that infection of mammalian cells by 
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Table 2. DNA damage response pathway components identified as interacting with, or being in close proximity to, SARS-CoV-2 proteins by mass 
spectrometric analysis. A very brief description of the role of the DDR protein is given, together with appropriate references

SARS-CoV-2 protein Associated cellular DDR 
protein

DDR protein function Reference

Nsp1 RUVBL1 AAA+ATPase. DSB repair [178]

RUVBL2 AAA+ATPase. DSB repair [178]

PRIM1 DNA primase. DNA replication [176, 177, 183]

PRIM2 DNA primase. DNA replication [176, 177, 183]

POLA1 DNA polymerase alpha1. DNA replication [158, 176–178]

POLA2 DNA polymerase alpha2. DNA replication [176, 177, 180]

Timeless Involved in replication stress and genome stability [180]

Ku70 (XRCC6) DNA PK component. NHEJ double-strand break repair [183]

Ku80 (XRCC5) DNA PK component. NHEJ double-strand break repair [183]

Nsp2 Bub1B Protein kinase. Role in mitotic checkpoint [158]

Nsp3 Bub1B Protein kinase. Role in mitotic checkpoint [158]

RCHY1 E3 ubiquitin ligase. Regulates p53 levels among others [158]

RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

Nsp3+Nsp8 FANCI Fanconi anaemia component I. Role in DSB repair and repair of inter-strand 
crosslinks

[181]

Nsp4 POLDIP2 DNA polymerase delta interacting protein 2. Role in DNA replication [158]

RAD23A A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [181]

RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

XPC Nucleotide excision repair of bulky lesions and oxidative DNA damage [181]

Nsp5 ERCC3 Nucleotide excision repair of bulky lesions and oxidative DNA damage [176]

FANCD2 Fanconi anaemia component D2. Role in DSB repair and repair of inter-strand 
crosslinks

[178]

p53 Transcription factor, involved in cell cycle checkpoints following DNA damage [178]

RAD9A Component of the 9-1-1 cell cycle checkpoint response complex [178]

Nsp7 BRCA2 Roles in homologous recombination, G2 checkpoint control, protection of stalled 
replication forks

[158]

FANCA Fanconi anaemia component A. Role in DSB repair and repair of inter-strand 
crosslinks

[158]

FANCI Fanconi anaemia component I. Role in DSB repair and repair of inter-strand 
crosslinks

[158]

Bub1 Protein kinase. Role in mitotic checkpoint [158]

Bub1B Protein kinase. Role in mitotic checkpoint [158]

POLD1 Catalytic subunit of DNA polymerase delta. Involved in DNA replication [178]

POLE Catalytic subunit of DNA polymerase epsilon. Involved in DNA replication [158]

Rad54B Involved in homologous recombination [158]

cdc25c Phosphatase involved in cell cycle regulation [158]

claspin Adaptor protein facilitating activation of Chk1, involved in replication fork 
stability

[158]

Tipin Timeless interacting protein, involved in replication stress [158]

Continued
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SARS-CoV-2 protein Associated cellular DDR 
protein

DDR protein function Reference

BAP1 BRCA1-associated protein 1. Role in DNA damage repair and cell cycle regulation [158]

Nsp9 RCHY1 E3 ubiquitin ligase. Regulates p53 levels among others [176]

POLDIP3 DNA polymerase delta interacting protein 3. Role in DNA replication [158]

Nsp10 POLD1 Catalytic subunit of DNA polymerase delta. Involved in DNA replication [181]

Nsp12 FANCA Fanconi anaemia component A. Role in DSB repair and repair of inter-strand 
crosslinks

[158]

Nsp14 MRE11 Exo-and endonuclease, component of the MRN complex, involved in DSB repair [176]

RAD50 Component of the MRN complex, involved in DSB repair [176]

RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

p53 Transcription factor, involved in cell cycle checkpoints following DNA damage [176]

UBR5 Ubiquitin E3ligase. Regulates DNA topoisomerase II-binding protein (TopBP1) 
and Rnf168 in the DNA damage response

[176]

Nsp15 BLM RecQ helicase with a role in homologous recombination [181]

Nsp16 ERCC6L Excision repair 6-like protein, a DNA translocase involved in the mitotic spindle [158]

FANCA Fanconi anaemia component A. Role in DSB repair and repair of inter-strand 
crosslinks

[158]

RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [184]

ORF3a SUN2 Chromosome reassembly factor [180, 183]

RAD23B A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [158]

ORF3b RAD23B A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [158]

ORF7a FANCI Fanconi anaemia component I. Role in DSB repair and repair of inter-strand 
crosslinks

[158, 183]

ATR Kinase central to the DNA damage response, involved in sensing replication stress [181]

RAD23B A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [158]

ORF7b RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

ORF8 TP53RK p53 regulating kinase [158]

DNMT1 DNA methyltransferase 1. Multiple functions [177]

POLDIP3 DNA polymerase delta interacting protein 3. Role in DNA replication [158]

ORF9b BRIP1 BRCA1 interacting protein1. A RecQ helicase, also known as FANCJ. Involved in 
homologous recombination and DNA replication stress

[178]

hnRNPUL2 RNA-binding protein involved in homologous recombination with the MRN 
complex

[180]

RAD21 Cohesin complex component. Involved in post-replicative DNA repair [180]

H2AX Histone, which is central to genome stability through its role in the signalling 
DNA damage. Involved in the assembly of repair foci

[180]

ORF14 FANCI Fanconi anaemia component I. Role in DSB repair and repair of inter-strand 
crosslinks

[158]

RAD23B A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [158]

TP53RK p53 regulating kinase [158]

POLDIP3 DNA polymerase delta interacting protein 3. Role in DNA replication [158]

Table 2.  Continued

Continued
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SARS-CoV-2 results in damage to the host cell DNA. Several studies have demonstrated this directly by comet assays and/or the 
presence of DNA repair foci. For example, DNA fragmentation, as measured by increased comet tail moment and the presence of 
micronuclei, was seen in SARS-CoV-2-infected Huh7 cells [136] and in patient cells [160]. Similarly, γH2AX foci were observed 
in the same cells and in SARS-CoV-2-infected lung cells from cynomolgus macaques and epithelial and endothelial lung cells 
from COVID-19 patients, indicative of DNA damage [136, 187, 188]. Senescence, associated with DNA damage, has also been 
reported following SARS-CoV-2 infection (discussed below).

As noted above, in a large proteomic screen the effects of SARS-CoV-2 on the phosphorylation of viral and host cell proteins was 
examined [144]. Seven viral proteins were substrates for cellular kinases at a total of 49 sites. Based on the amino acid sequences 
that were phosphorylated, casein kinase II (CK2), cyclin-dependent kinase (CDK), cdc2-like kinase (CLK) and protein kinase 
C (PKC) were highly activated. A single site probably phosphorylated by ATM or ATR was identified [144]. However, it was 
suggested that most of the phosphorylation sites did not play a functional role in viral replication, although the single site in Nsp9, 
sites in the S protein and sites towards the N-terminal region of protein N were close to proposed protein–protein interfaces [144].

On examination of cellular pathways, phosphorylation of proteins involved in double-strand break repair and single-strand 
DNA binding, among many others, were notably increased upon SARS-CoV-2 infection [144]. Additionally, heterochromatin 
and various chromosomal regions were increasingly phosphorylated. Considering more specific complexes involved in the 
DDR, BRCA1–HDAC1–HDAC2, BRAF53–BRCA2 and TIP5−DNMT−HDAC1 complexes were highly phosphorylated after 
infection. Other DDR complexes phosphorylated to a lesser extent were those comprising MGC1−DNA−PKcs−Ku, MDC1−
H2AFX−TP53BP1, MDC1−p53BP1−SMC1, MDC1−MRE11−RAD50−NBS1, DNA–PK–Ku and DNA–PK–Artemis. Moreover, 
a complex comprising MDC1–MRN–ATM–FANCD2 was highly phosphorylated in the initial stage of SARS-CoV-2 infection 
but to a lesser extent later. These events are indicative of activation of double-strand break repair pathways. Overall, the activities 
of ~97 kinases were affected over a 24 h infection time course; the most highly activated were components of the p38 pathway, 
including p38ɣ (MAPK12), CK2 (CSNK2A1/2) and Ca2+/calmodulin-dependent protein kinase (CAMK2G). The activities of 
a large number of others was reduced, including CDK1, 2 and 5 and AKT 1 and 2 [144].

Of the 332 host proteins identified by Gordon and colleagues as interactors with viral components, 40 were significantly differ-
entially phosphorylated following SARS-CoV-2 infection [144, 176]. Most of these had no direct involvement in the DDR; 
however, the phosphorylation of DNA polymerase α 2, which associates with SARS-CoV-2 Nsp1, is markedly reduced (on T127 
and T130) during infection, whereas the phosphorylation of DNMT1, which binds to ORF8, is increased (on S714) [144]. ZC3H18 
has been identified as an E protein-associated component of the DDR. Its phosphorylation on S868 decreases during infection, 
whereas phosphorylation on T611 initially decreases and then increases. ZC3H18 is a DNA-binding protein that promotes BRCA1 
transcription, although the effects of its phosphorylation are not clear [189].

In a small pilot study, looking specifically at DDR pathways, it was observed that infection of Vero E6 cells with SARS-CoV-2 
causes activation of the ATR pathway, seen as increased phosphorylation of Chk1 on S280 and H2AX on S139 [175]. In a more 
detailed investigation, it was observed that an ATR inhibitor, berzosertib, showed potent antiviral activity against SARS-CoV-2 

SARS-CoV-2 protein Associated cellular DDR 
protein

DDR protein function Reference

Envelope (E) protein RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

POLDIP3 DNA polymerase delta interacting protein 3. Role in DNA replication [158]

ZC3H18 Binds the cap-binding complex on capped RNAs [176, 180]

Membrane (M) protein FANCI Fanconi anaemia component I. Role in DSB repair and repair of inter-strand 
crosslinks

[176, 183]

Ligase 3 Binds to XRCC1 and is involved in base excision repair [180]

Timeless Involved in replication stress and genome stability [165]

RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

Nucleocapsid (N) 
protein

hnRNPUL2 RNA-binding protein involved in homologous recombination with the MRN 
complex

[181]

ERCC6L Excision repair 6-like protein, a DNA translocase involved in the mitotic spindle [158]

RAD23B A role in nucleotide excision repair of bulky lesions and oxidative DNA damage [184]

Spike (S) protein RINT1 RAD50 interactor 1. Regulates cell cycle and telomere length [158]

Table 2.  Continued
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in multiple cell types and blocked replication at the post-entry step [190]. Inhibition of viral replication was accompanied by a 
marked reduction of Chk1 phosphorylation on S345 [190].

Other studies have also indicated activation of DDR signalling following SARS-CoV-2 infection [136]. Over a 48 h time course, 
ATM and DNA-PKcs were phosphorylated on S1981 and S2056, respectively. Activation of ATM led to increased phosphorylation 
of KAP1 (S824) and H2AX (S139) but not Chk2 (T68). Furthermore, increased numbers of KAP1 S824, RPA S4/8 and γH2AX foci 
were seen in SARS-CoV-2-infected cells [136]. There was no significant phosphorylation of Chk1 (S317), but there was a marked 
decrease in the level of the protein detected at a later time after infection. There was also a reduction in expression of RRM2, 
which is normally controlled by Chk1, resulting in decreased levels of dNTPs, probably contributing to an observed reduction 
in S phase progression [136]. In an attempt to determine which SARS-CoV-2 proteins were responsible for Chk1 depletion, 
individual genes were expressed. ORF6 associates with nuclear pores, preventing the import of Chk1, leading to its accumulation 
in the cytoplasm and subsequent degradation by the proteasome [136]. Nsp13 also contributes to degradation of Chk1 by causing 
its co-localization in autophagosomes and degradation through autophagy [136]. Nsp13 had been previously reported to target 
TBK1 for degradation by autophagy through direct interaction and association with p62 in SARS-CoV-2-infected cells [191, 192].

Significantly, SARS-CoV-2 N protein inhibits NHEJ [136]. This appears to be through binding to dilncRNA, which inhibits the 
interaction with 53BP1 and its recruitment to repair foci. It has previously been reported that dilncRNA, generated at DSBs, 
is responsible for liquid–liquid phase separation (LLPS) of 53BP1 [193, 194]. It has been observed that 53BP1 does not readily 
locate to DNA repair foci in SARS-CoV-2-infected cells or following transfection of N [136]. Earlier reports had indicated that 
N protein condenses with RNA by LLPS and that it associates with stress granules that form through LLPS [195, 196].

Interestingly, SARS-CoV-2 has been linked to various members of the PARP [poly (ADP)-ribose polymerase] family and PARP 
inhibitors, such as stenoparib or olaparib, have been suggested as anti-COVID-19 agents [197–199]. However, it appears that the 
PARP enzymes induced by SARS-CoV-2 are MARylating PARPs (PARP7, PARP 10, PARP 12 and PARP14), which add a single 
ADP-ribose rather than PARPs involved in DNA repair pathways, which are generally responsible for the addition of branched 
or linear chains of ADP-ribose moieties [198, 200, 201]. Increased expression of the MARylating PARPs following SARS-Cov-2 
infection primarily impacts on NAD metabolism, with, for example, increased levels of NAMPT (nicotinamide phosphoribo-
syltransferase) [198]. Thus, NAD+ levels were found to be reduced following increased expression of MARylating PARPs, as has 
been shown to be the case with PARP1 [198, 202]. The implications of these observations for any genome instability caused by 
SARS-CoV-2 infection are not clear at present. However, it has been demonstrated that PARP inhibitors can have anti-SARS-
CoV-2 effects, although this is largely through direct inhibition of viral proteins, such as the main protease Mpro (Nsp5) [197, 203].

SARS-CoV-2 and telomeres
In early studies, it was concluded that the severity of COVID-19 increased with age, with older patients having higher mortality 
(see, for example, [204–206]). Therefore, molecular pathways underlying aging, such as telomere shortening, were thought to be 
important in determining the severity of the disease. Indeed, it has been reported that patients with a larger proportion of short 
telomeres developed more severe COVID-19 symptoms [207, 208]. However, this is not a view that is universally held and other 
reports have indicated that decreased telomere length is not necessarily linked to increased severity of COVID-19 (for example, 
[209, 210]).

The production of lymphocytes is closely linked to telomere length. Shorter telomeres due to aging can induce slow proliferation of 
lymphocytes. To achieve a requisite immune response to SARS-CoV-2 infection, generation and maintenance of T-cells is essential. 
Marked reduction of the T-cell count, lymphopenia, has been found to be a characteristic of severe COVID-19. In older patients 
infected with SARS-CoV-2, PBMC telomeres have been observed to be relatively short and this was linked to low lymphocyte 
counts. T-cell proliferative capacity is telomere length-dependent, and telomeres shorten with age. These observations may account 
for the vulnerability of older patients to COVID-19 [211]. In other studies, it has been shown that short blood leukocyte telomere 
lengths, as a marker of age, can contribute to the development of post-COVID-19 symptoms in the lungs of some patients [212].

Interestingly, expression of the ACE2 receptor increases with telomere shortening in mice and in cultured human cells [213]. 
Regulation is at the transcriptional level with the ACE2 promoter being DDR-dependent. Thus, ATM inhibition or inhibition 
of the telomeric DDR leads to increased ACE2 level. It has been concluded that during aging there is increased telomere short-
ening, increased DDR activity and increased ACE2 expression, resulting in more severe levels of SARS-CoV-2 infection [213]. 
Importantly, ATM and ATR activities are required for localization of telomerase to telomeres and telomere elongation [214]. It 
might be supposed in the case of prolonged infection, SARS-CoV-2 could cause alteration in telomere length by affecting PIKKs.

Senescence induced by SARS-CoV-2
Simplistically, two major forms of senescence can be delineated. Replicative senescence is associated with the shortening of 
telomeres with increasing age, whereas stress-induced senescence is a response to a wide variety of factors, including DNA damage 
and infection by viruses such as SARS-Cov-2, irrespective of telomere length [215–217]. It has now been shown that SARS-CoV-2 
can induce virus-induced-senescence (VIS) by a number of different mechanisms (reviewed in [217, 218]). Many virus types, 
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including single- and double-stranded DNA and RNA viruses can cause VIS, which is generally very similar to oncogene-induced 
senescence (reviewed in [217]). Infection with SARS-CoV-2 has been shown to be responsible for senescence-associated secre-
tory phenotype (SASP), which involves secretion of pro-inflammatory cytokines such as IL-1β, IL-6 and Il-8 and the presence 
of γH2AX foci, which is probably due to the presence of ROS [219]. Reduction in ROS in in vitro models reduced DNA damage 
and senescence-associated β-galactosidase activity. Shedding of mitochondrial outer membranes in response to stress caused 
by infection could also contribute to DNA damage caused by the virus [220–222]. VIS is also marked by increased expression 
of the cell cycle inhibitors p16 and p21 and the inhibition of expression of cell cycle promoters, such as E2F targets and SASP 
[217]. (SASP is characterized by secretion of extracellular modifying factors, such as pro-inflammatory factors, ECM-degrading 
proteins and pro-coagulatory factors, amongst others [217]).

LONG COVID AND DNA DAMAGE
Long COVID [also referred to as ‘post-COVID condition’, ‘post-COVID syndrome’ and ‘post-acute sequelae of COVID-19’ 
(PASC)] is a prolonged, often severe condition with diverse symptoms occurring after SARS-CoV-2 infection (reviewed in 
[7, 223–227]). Symptoms include fatigue, anosmia and dysgeusia, persistent respiratory problems, such as shortness of breath, 
periodic cognitive difficulties, cardiovascular difficulties, such as chest pain and arrhythmia, gastrointestinal symptoms, rheumatic 
and dermatological problems, and neurological and psychiatric symptoms (reviewed, for example, in [224]). Because of the 
multiple, diverse symptoms associated with long COVID, explanations of its causes have been many and varied. For example, 
it has been suggested that it is due to residual virus, immune dysregulation, possibly due to reactivation of a latent herpesvirus, 
more general effects of SARS-CoV-2 on the host microbiota, autoimmunity and/or residual dysfunctional signalling (reviewed 
in [7]). Of particular interest from the point of view of long-term damage to the DNA and the induction of genome instability is 
the possibility that there is residual or perhaps latent virus remaining in the infected patient, ostensibly after recovery. It is now 
clear that components of SARS-CoV-2 are relatively common after the disappearance of symptoms. Two forms of persistence can 
be recognized [223, 227]. Firstly, the presence of persistent infectious SARS-CoV-2, capable of replicating. It has been suggested 
that persistent viral reservoirs could be present in patients, even though they test negative by PCR [228]. SARS-CoV-2 RNA was 
shown to be present at multiple sites within the bodies of a cohort of patients who had died from COVID-19 [229]. Virus could be 
isolated from approximately half of the tissues tested; in one case over 7 months since diagnosis [229]. Other studies have shown 
SARS-CoV-2 in sites such as the intestine, respiratory tract and lymph nodes [230–232]. The second form of persistence would 
be the retention of viral RNA and/or protein at specific sites. For example, SARS-CoV-2 N protein was detected in intestinal 
epithelium 4 months after COVID-19 diagnosis in a third of patients in one study. Viral RNA was detected in half of those who 
were positive for N protein, and all tested negative by PCR for the virus [233]. SARS-CoV-2 RNA has been detected in the kidney, 
respiratory tract and blood 2 months after infection [234–238]. In a further study, SARS-CoV-2 N protein was also observed at 
several sites up to 6 months after testing negative by PCR in a small cohort of patients [239].

Further evidence suggests that reverse-transcribed SARS-CoV-2 RNA can be integrated into host cell DNA with subsequent 
transcription of the integrated sequences [240]. These observations were made primarily on cells in culture, but it was also noted 
that in some patient-derived samples viral sequences were transcribed from integrated DNA copies of viral sequences, although 
these small fragments were not capable of producing infectious virus [240]. It should, however, be noted that these suggestions 
are controversial and have been contradicted in other reports [241, 242].

It is tempting to compare the effects of SARS-CoV-2 infection with those of HCV, another positive-sense, single-stranded RNA 
virus. HCV establishes chronic or persistent low-level infection in the liver, and this is a major contributory factor (with HBV) to 
hepatitis and hepatocellular carcinoma (HCC). Chronic HCV infection causes oxidative stress and high levels of ROS, as well as 
stimulating the production of NO via activation of inducible NO synthase (iNOS) [243–250]. The effects of these high levels of 
NO and ROS probably lead to the accumulation of DNA damage and the genetic abnormalities observed in HCV-infected cells; 
this can drive the progression of HCV-associated malignancies [246, 247, 249]. As well as inducing DNA damage, HCV proteins 
can directly impinge on the cellular DDR, generally reducing its effectiveness (reviewed in [43, 251]).

Chronic infection by HCV can initiate a non-specific immune-mediated inflammation, seen as hepatitis, which is linked to 
oxidative stress. As discussed above, SARS-CoV-2 infection is closely associated with inflammation and the generation of ROS. 
If the virus were to persist in a comparable fashion to HCV it is possible that it could also have serious deleterious consequences 
for the infected tissue and possibly cause DNA damage and genomic instability. Time will tell if this is the case.

CONCLUSIONS
It is less than 4 years since the initial outbreak of infection in Wuhan by a previously unknown virus. Yet our knowledge of many 
facets of SARS-CoV-2’s life cycle, replication and effects on the infected host cell is considerable, although there are aspects of 
SARS-CoV-2 biology that have not, up to now, been examined in detail. One of these is the relationship between the virus and 
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the cellular DDR, although it is now becoming clear that some of these pathways are a target for the virus, although perhaps in 
a minor way.

Importantly, as well as impinging on DDR pathways, SARS-CoV-2 causes damage to cellular DNA, generally through the genera-
tion of ROS, which can cause double- and single-strand breaks, intra- and inter-strand crosslinks, and non-bulky and bulky base 
modifications. ROS are generated at several points during viral infection, generally through activation of multiple inflammatory 
pathways, as outlined above. These effects are amplified by the ability of the virus to downregulate host cell antioxidant pathways, 
aiding replication and possible upregulation of pro-oxidant genes.

Although there have been several large-scale studies examining the interactome for SARS-CoV-2 proteins, the results have tended 
to be somewhat contradictory (see above). However, components of different DDR pathways have been identified as binding 
partners for viral proteins, such as the association of POLD1 with Nsp7 and Nsp10 [158, 181], the association of MRE11 and 
RAD50 with Nsp14 [161], and the association of POLA1 and POLA2 with Nsp1 [158, 176–178, 180, 181]. Most of the reported 
interactions are summarized in Table 2. Whether they are all significant, or even occur in vivo, is open to question, although 
it seems reasonable to assume that these data establish that DDR pathways are targets for SARS-CoV-2. As well as associating 
with DDR proteins, it has been confirmed that SARS-CoV-2 proteins affect DDR pathways. For example, SARS-CoV-2 infection 
results in phosphorylation of ATM and DNA-PKcs, an increase in DNA repair foci containing phosphorylated ATM substrates 
and degradation of Chk1 [136]. It seems that there is a requirement for certain DDR pathways for optimal viral replication as 
addition of the ATR inhibitor, berzosertib, has potent anti-viral activity, inhibiting Chk1 phosphorylation [190].

The effects of SARS-CoV-2 on the host genome and on the cellular DDR are comparable to those seen with other RNA and DNA 
viruses. Infection with the RNA viruses HIV-1, HTLV-1 and HCV generates ROS, which can cause DNA damage (reviewed 
in [43]). In the case of HCV (and HBV), this has been linked to hepatocellular carcinoma. Similarly, ROS production is also 
a consequence of DNA virus infection, such as is observed with, among others, HBV, EBV and HPV [42, 252]. Although our 
knowledge of the effects of SARS-CoV-2 on the DDR is not extensive, again they appear to be similar to those reported for other 
viruses. Thus, there is an activation of ATM, and DNA-PK signalling, as is generally observed, and a generation of γH2AX repair 
foci [42, 46, 136]. A point of some concern may be whether SARS-CoV-2 virus or viral proteins and/or RNA persist in patients 
suffering from long COVID and whether these could cause genome instability over the longer term. If this were the case, a rise 
in cancer cases might be seen in future.
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